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Abstract: Current aerodynamic parameter identification methods take the consistency between the
response of the motion model reconstructed with the identified aerodynamic parameters and flight
data as an optimization index. Since there is only one index constraint in aerodynamic parameter
optimization, and more than ten aerodynamic parameters to be identified simultaneously have
different sensitivity to the optimization index, the accuracy of identification results of parameters
with low sensitivity is poor, especially for those with small absolute value. To solve these problems, a
new idea, having aerodynamic parameters solved by balance equations and identified in stages, is
proposed. Based on the motion characteristics of different lateral-directional maneuvers, the scheme
of combined maneuvers is designed, and the step-by-step identification procedure is established. An
estimation method of angular acceleration with angular velocity equivalent model is proposed to solve
the problem that angular acceleration cannot be measured directly. A lateral-directional aerodynamic
parameter identification method using segmented adaptation of flight data and identification models
is established based on the identifiability of flight data. The lateral-directional aerodynamic parameter
identification results of a large civil aircraft show the identification results can be obtained with higher
accuracy by adopting the proposed identification method and the flight test scheme.

Keywords: aerodynamic parameter identification; identifiability analysis; optimal identification model;
maneuvers combination scheme; mixed least squares estimator; angular acceleration estimation

1. Introduction

The aim of aircraft aerodynamic parameter identification is to obtain an accurate
aerodynamic model through valid content in flight data [1,2]. The widely used parameter
identification methods, such as the maximum likelihood estimation (MLE) method, carry
out the optimization of multiple objectives under only one constraint. All of them take the
likelihood function established based on the identification model’s response and flight data
as an optimization index. They are carried out by simultaneously iterating all unknown
aerodynamic derivatives (generally more than ten) in the identification model. Since all of
the parameters to be identified have different sensitivity to the change of the only constraint
index, the optimal solution, during different time periods, obtained from the flight test data
of the same aircraft in the same flight state, is not the same. As a result, the consistency
of identification results is poor, especially for some aerodynamic derivatives such as Cnδa
and Clr with low sensitivity to the change of the optimization constraint index and small
absolute value. Furthermore, the accuracy of identification results is low [3–5]. In the flight
dynamics modeling of a civil aircraft flight simulator, some objective tests of qualification
performance standards in airworthiness regulations, such as step input of flight deck roll
controller, spiral stability [6], etc., require derivatives such as Cnδa and Clr of a higher
accuracy. Using existing conventional aerodynamic parameter identification methods,
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it is often difficult to meet the accuracy requirements of objective tests of qualification
performance standards.

In order to solve this problem, reference [7] presents an identification and solution
method of aerodynamic derivatives, where the derivatives are identified/solved step-by-
step using data from different flight test maneuvers. It has been applied in the aerodynamic
modeling of simulators in recent years. The basic principle of the method is to identify
different derivatives in stages by using the various dynamic characteristics of aircraft in
different flight test maneuvers, and the accurate results obtained are used as prior infor-
mation for the identification and solution of subsequent derivatives. More specifically, the
control derivatives and stability derivatives are identified and solved through asymmetric
thrust trim, steady heading sideslip (SHSS), roll response, rudder response and Dutch roll,
respectively. Then, using the obtained derivative identification results as prior information,
the dynamic derivatives are identified by exciting Dutch-roll oscillation. Due to the fact
that only a few derivatives are identified through each flight test maneuver, and the rel-
atively accurate results obtained can be used as the prior constraints for the subsequent
derivative identification, the disadvantage of the conventional methods is circumvented
by transforming the multi-objective optimization into the identification and solution of a
small number of derivatives under multiple constraints. This improves the accuracy of the
identification results effectively.

However, this step-by-step identification/solution approach also has some shortcom-
ings. First, the flight test scheme is complicated, requiring at least five kinds of flight
test maneuvers, as mentioned above. Secondly, asymmetric thrust trim is the basis of the
identification and solution process. This maneuver requires the engines on both sides to
provide sufficient and accurately measured asymmetric thrust for the calculation of Cnβ and
Cnδr. However, for aircraft with a single engine or short engine distance (i.e., the distance
between the engines on both sides of the aircraft and the symmetrical plane of the aircraft is
short), the lateral-directional aerodynamic derivatives cannot be the identified accurately by
this method. Thus, the application scope of this method is limited. In addition, reference [7]
only provides the specific steps for solving stability derivatives and control derivatives
based on the balance equations without providing specific procedures for identification of
dynamic derivatives.

A new step-by-step identification method is proposed without using asymmetric
thrust trim. The lateral-directional aerodynamic derivatives of the aircraft can be accurately
obtained through SHSS and 3-2-1-1 input of aileron and rudder. Firstly, the identification
procedure is designed to obtain all the derivatives according to the valid content of aerody-
namic parameters in the flight test data of the above three maneuvers. Then, according to
the change of the magnitude of each variable, all flight data are divided into different data
segments. This is because only the data with large magnitude of variables and no collinear-
ity could have better identifiability. In some cases, it is necessary to select discontinuous
data segments for identification in order to obtain data with larger magnitude and better
identifiability, since the aerodynamic forces and moments of the aircraft constantly change.
The maximum likelihood estimation (MLE) method cannot be used for identification of
discontinuous data [8]; hence, the least squares method is used for parameter identification,
which makes it necessary to use accurate angular acceleration data to calculate aerody-
namic moment coefficients. However, it is difficult to measure angular acceleration directly
and accurately because of the immaturity of current angular acceleration measurement
technology [9,10]. Meanwhile, differential angular velocity data will produce differential
error and greatly magnify data noise [11], so the obtained differential data cannot be used
for identification. To obtain angular acceleration data with high accuracy, an angular
acceleration estimation method based on the angular velocity equivalent model (AVEM)
is proposed. Firstly, based on the generic aerodynamic moment model and the rotational
dynamics equations of aircraft, an AVEM is established, which could fit the flight test data
of aircraft angular velocity well. Then, the time delay between angular velocity data and
control surface deflection data is calibrated using the cross-correlation function between
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the angular acceleration response (AAR) of the AVEM and the differential signal of angular
velocity data. Finally, the angular acceleration calculated through the AVEM is used as the
estimated value of the aircraft’s angular acceleration during flight tests.

Flight data will be segmented preliminarily according to the change of the magnitude
of each variable, and the stepwise regression and the combined model-fitting evalua-
tion metrics are used to determine the model structure and the data segmentation scope.
The unidentifiable terms will be processed as colored noise. According to the designed
identification and solution procedure, the identification and solution of lateral-directional
aerodynamic derivatives are carried out in stages using the ordinary least squares method
and least squares mixed estimator. Meanwhile, Clβ and Cnδa are directly solved through
prior constraints and SHSS trim results. Finally, the established identification/solution
method, which adopts the segmented adaptation of flight test data and identification
models, is used to identify and validate the lateral-directional aerodynamic parameters
based on the flight test data of a large fly-by-wire-controlled civil aircraft. The results are
compared and analyzed with lateral-directional aerodynamic parameters obtained from
the conventional MLE method.

2. Identification Principle of Aerodynamic Parameters Based on Combined
Maneuvers Scheme
2.1. Principle of Aerodynamic Parameter Identification

The identification model of lateral-directional aerodynamic parameters includes side
force, roll and yaw moment:

CY = CYββ + CYδr δr + CYrr + CYp p

Cl = Clββ + Clδr δr + Clδa δa + Clp p + Clrr

Cn = Cnββ + Cnδr δr + Cnδa δa + Cnp p + Cnrr
(1)

The independent variables of the lateral-directional aerodynamic parameter identifica-
tion model are the motion variables and control surface deflections in Equation (1). The
observation variables of the identification model are side force coefficient CY, roll moment
coefficient Cl and yaw moment coefficient Cn.

CY = Y
0.5ρV2S =

may
0.5ρV2S

Cl =
L

0.5ρV2Sb =
.
pIxx+qr(Izz−Iyy)−(pq+

.
r)Ixz

0.5ρV2Sb

Cn = N
0.5ρV2Sb =

.
rIzz+pq(Iyy−Ixx)+(qr− .

p)Ixz
0.5ρV2Sb

(2)

The mass, inertial moment, dynamic pressure, lateral acceleration and angular velocity
in Equation (2) could be measured in the aerodynamic parameter identification flight test.
Angular acceleration is estimated through the method described in Section 2.2. To sum
up, the data of CY, Cl and Cn are calculated from the directly measured flight test data
and the estimated angular acceleration in the identification model. Because these data are
essentially objective observations of the aerodynamic forces and moments of the aircraft in
the motion, they are called observations.

In order to simplify the flight test scheme, it is necessary to accurately identify multiple
derivatives through a single maneuver. The 3-2-1-1 signal is easily executed for the control
surfaces of the aircraft, and its response has sufficient content of dynamic characteristics.
The response data of different segments show different dynamic characteristics of the
aircraft, which can be used to identify different derivatives. On the basis of this, the three
flight test maneuvers adopted for identification of the lateral-directional aerodynamic
derivatives of aircraft in this paper are aileron, rudder 3-2-1-1 signal input and SHSS. The
typical 3-2-1-1 signal includes four continuous square-wave signals with durations of 3 s,
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2 s, 1 s and 1 s and amplitudes of positive, negative, positive and negative, respectively, as
shown in Figure 1:
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The 3-2-1-1 aileron input can fully excite the roll motion of the aircraft, which is benefi-
cial to the identification of the aileron roll control derivative and the dynamic derivative
related to the roll angle velocity [12]. At the initial response stage, the roll motion is mainly
generated by the aileron roll control moment and roll damping moment, since the sideslip
angle and yaw angular velocity generated by aileron deflection are small. In such a case,
the roll moment coefficient of the aircraft can be expressed as: Cl = Clδa δa + Clp p + ∆Cl

∆Cl = Clββ + Clδr δr + Clrr
(3)

In Equation (3), ∆Cl represents the components of the rolling moment with relatively
little effect on the rolling motion. The sensitivity of Cl to Clδa can be improved effectively
by using the initial response data of the 3-2-1-1 aileron input.

At the initial response stage of 3-2-1-1 rudder input, the yaw and roll angular velocity
caused by control are small, and the motion is mainly generated by the rudder control
moment and directional stability moment. In such a case, the roll and yaw moment
coefficient can be expressed as: Cl = Clδr δr + Clββ + ∆Cl

∆Cl = Clrr + Clp p
(4)

 Cn = Cnδr δr + Cnββ + ∆Cn

∆Cn = Cnrr + Cnp p
(5)

In Equation (5), ∆Cn represents the components of the yaw moment with relatively
little effect on the yaw motion. The sensitivity of Cn and Cl to Clδr and Cnδr can be improved
effectively by using the initial response data of the 3-2-1-1 rudder input.

After the initial response stage of the 3-2-1-1 rudder input, the control of the rudder
will cause significant lateral-directional coupling motion, and sideslip angle, roll and yaw
angular velocity will change significantly. In such a case, the side force, roll and yaw
moment coefficient can be expressed as:

CY = CYββ + CYδr δr + CYrr + CYp p

Cl = Clδr δr + Clββ + Clrr + Clp p

Cn = Cnδr δr + Cnββ + Cnrr + Cnp p
(6)
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Cnr, CYβ and CYδr are identified by Equation (6). The impact of β and δr measurement
error in identification of Cnr can be reduced by using the identification results of Cnδr and
Cnβ already obtained. In the response to rudder input, the accuracy of identification results
of cross derivatives is relatively low. This is based on the fact that the lateral-directional
motion coupling is obvious, and the aerodynamic moment components affecting the aircraft
motion are so complex that the cross moment is not the dominant moment for the roll and
yaw motion. After the identification of control derivatives, stability derivatives and damp-
ing derivatives, the identification accuracy of cross derivatives can be effectively improved
by taking the identification results as prior information and selecting the data with large
angular velocity, relatively small sideslip angle, and small control surface deflection.

The sideslip angle in SHSS is stable and has relatively small observation error. How-
ever, the change of sideslip angle and rudder surface deflection angle presents a stable
linear feature. It means that the data has collinearity and cannot be used for identification
under general conditions. However, this ratio relation can be used as a prior constraint for
the solution of Clβ and Cnβ after the control derivatives are obtained by the identification of
other maneuvers. The lateral-directional aerodynamic force and moment balance equations
in SHSS are the following:

CY = CYββ + CYδr δr = may/(0.5ρV2S)

Cl = Clββ + Clδr δr + Clδa δa = 0

Cn = Cnββ + Cnδr δr + Cnδa δa = 0

(7)

The ratio relationship among aileron deflection, rudder deflection and sideslip angle
in SHSS can be gained through Equation (7). Clβ can be directly solved by using the
obtained Clδa and Clδr, and Cnδa can be directly solved by using the obtained Cnδr and Cnβ.
Furthermore, Cnp is identified through the 3-2-1-1 aileron input response data, and Clr is
identified through the 3-2-1-1 rudder input response data based on the identification results
obtained through the steps above.

To sum up, the scheme of combined flight test maneuvers for identification of lateral-
directional aerodynamic parameters is as follows: Firstly, Clδa and Clp are identified through
the 3-2-1-1 aileron input. Next, Clδr, Cnδr, Cnβ, Cnr, CYβ and CYδr are identified through the
3-2-1-1 rudder input. Thirdly, Clβ is solved by using SHSS flight data and the identification
results of Clδa and Clδr. Cnδa is solved by using SHSS flight data and the identification results
of Cnδr and Cnβ. Finally, Cnp is identified by using the flight data of the 3-2-1-1 aileron input
and the identification results of Cnδa, Cnδr, Cnβ and Cnr. Clr is identified by using the flight
data of the 3-2-1-1 rudder input and the identification results of Clδr, Clβ and Clp.

2.2. Angular Acceleration Estimation Method

In the aerodynamic parameter identification principle mentioned above, it is necessary
to obtain accurate angular acceleration data to calculate the observation values of roll and
yaw moment coefficients for data segmentation and parameter identification. Since angular
acceleration is difficult to be measured directly and accurately, an AVEM, which can well
fit the flight data of angular velocity, is established, and the calculated value of angular
acceleration based on the AVEM is used as the estimated value of angular acceleration. The
generic aerodynamic model, as the modeling basis of AVEM, is a polynomial model [13,14],
and it includes a constant term, aerodynamic angle, angular velocity, rudder deflection
angle, high-order aerodynamic angle and coupling term, etc. The structure of the generic
three-axis aerodynamic moment coefficient model is [15]:

Cl = θ1β + θ2 p + θ3r + θ4δa + θ5δr

Cm = θ6 + θ7α + θ8q + θ9δe + θ10αq + θ11α2q + θ12α2δe + θ13α3q + θ14α3δe + θ15α4

Cn = θ16β + θ17 p + θ18r + θ19δa + θ20δr + θ21β2 + θ22β3
(8)
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where θ1~θ22 are the unknown parameters in the generic aerodynamic model, which are
used to describe the contribution of aerodynamic angle, angular velocity, control surface
deflection and possible nonlinear factors to the aerodynamic moment coefficient. The
three-axis rotational dynamics equations are the following:

.
p = Cl QSb

Ixx
− (Izz−Iyy)

Ixx
qr + Ixz

Ixx
(pq +

.
r)

.
q = CmQSc

Iyy
− (Ixx−Izz)

Iyy
pr − Ixz

Iyy
(p2 − r2)

.
r = CnQSb

Izz
− (Iyy−Ixx)

Izz
pq + Ixz

Izz
(

.
p − qr)

(9)

The AVEM is constructed preliminarily by combing generic aerodynamic model (8) with
the aircraft’s rotational dynamics as shown in Equation (9). The angular velocity response
of the AVEM can be obtained by integrating the angular acceleration output of Equation (9).
The unknown parameters in model (8) will be iterated to make the angular velocity response
of the AVEM fit the angular velocity flight data. The initial values of unknown parameters
corresponding to aerodynamic angle, angular velocity and control surface deflection can
respectively adopt the stability derivatives, dynamic derivatives and control derivatives
obtained in the wind tunnel test. Meanwhile, the initial values of the remaining unknown
parameters can be set to zero. For example, the initial values of θ16~θ20 corresponding to β, p,
r, δa and δr can directly adopt the wind tunnel data of Cnβ, Cnp, Cnr, Cnδa and Cnδr, and the
initial values of θ21 and θ22 corresponding to β2 and β3 are 0.

The cost function transformed by the likelihood function between angular velocity
response of the AVEM and angular velocity data is used as optimization index

J(Θ) = det(R) (10)

The maximum likelihood estimation of R is:

R =
1
N

N

∑
k=1

[z(tk)− y(tk)][z(tk)− y(tk)]
T (11)

where N is the data length. z(tk) is the measurement of angular velocity data at tk time
point. y(tk) is the output value of the AVEM at tk time point. Iteration of the unknown
parameters in model (8) is carried out by Newton–Raphson method to minimize J(Θ).

2.3. Synchronization of Control Surface Deflection Data and Angular Velocity Data

The accuracy of control surface deflection data directly affects the fitting of the AVEM
to angular velocity data because the control surface deflection is one of the main inputs of
model (8). Since the control surface deflection data are mainly measured by the actuator
position sensor, and the angular velocity data are mainly measured by the gyroscope, they
are often not synchronized; in other words, they often do not change simultaneously. This
leads to poor fitting of the AVEM and low accuracy of angular acceleration estimation.
Hence, it is necessary to synchronize the control surface deflection data with the angular
velocity data. The measurement delay τ of angular velocity gyroscope can be approximated
as [16]:

τ =
1

ω f
arctan

(
2nsω f

ω2
f − ω2

s

)
(12)

where, ωs and ns are the natural frequency and damping of the sensor; ωf is the frequency
of aircraft motion. It is generally considered that the time delay of the measured data is
negligible when ωs is larger than 2.5ωf [16]. The natural frequency of the gyroscope used
in the flight test is 12.5 Hz, which is much higher than the frequency of aircraft motion. In
this case, the delay of angular velocity data can be ignored. AAR of the AVEM and control
surface deflection data change simultaneously. Angular velocity data and its differential
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data change simultaneously. Hence, the gap of time points at which AAR of the AVEM and
differential angular velocity data change is the gap of time points at which control surface
deflection data and angular velocity data change. Due to no time delay in angular velocity
data and its differential data, this gap of time points is the time delay of control surface
deflection data.

The differential signal of angular velocity data and AAR of the AVEM are most
similar when they change simultaneously. The greater the time difference between the two
signals is, the lower the similarity is. Therefore, the time delay between two signals can be
determined by the normalized cross-correlation function [17]:

Rxy(m) =

N
∑

n=0
x(n)y(n + m)

N
∑

n=0
x(n)x(n)

(13)

Equation (13) gives the correlation between sequence x(n), which does not move,
and sequence y(n), which moves left or right on the time axis for m sampling periods.
The closer Rxy is to 1, the more similar the two sequences are. Taking the sequence of
differential angular velocity data as x(n) and the AVR sequence of the AVEM as y(n), the
cross-correlation function between them is calculated. The m when Rxy is closest to 1
is taken as the time delay of the control surface deflection data (the time delay of the
angular velocity data approximates to 0). The AVEM with better fitting can be obtained by
fitting the angular velocity data again with the synchronized calibration control surface
deflection data.

It should be noted that, since the AVEM is fitted by aerodynamic angle, angular
velocity and other data, the AAR of the AVEM will contain the measurement error of
these data. So, the observation value of the aerodynamic moment coefficient calculated
from the estimated angular acceleration will certainly have some errors. However, the
impact of observation error on identification results can be reduced through appropriate
data selection.

To sum up, the angular acceleration estimation process is as follows:

(1) Having been given the initial value in the generic aerodynamic model, the unknown
parameters are iterated to minimize the cost function (10).

(2) Time delay of the control surface deflection data could be gained with the calculation
of the cross-correlation function between AAR of the AVEM and differential angular
velocity data. Then, the time-delay calibration of control surface deflection data is
carried out;

(3) The unknown parameters in the generic aerodynamic model are iterated once again
with the calibrated control surface deflection data to make the AVEM fit the flight
data. The aerodynamic moment coefficient observations calculated using the angular
acceleration of the AVEM at this moment could be applied for the identification of
aerodynamic derivatives. The flow diagram of the angular acceleration estimation
method is shown as Figure 2:
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Figure 2. The flow diagram of angular acceleration estimation method. 
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3. Segmented Adaptation Method of Data Segments and Identification Models
3.1. Data Segmentation Method Based on Requirements of Identifiability

The flight test data must meet three requirements to ensure the identifiability of
aerodynamic derivatives. The first is that the magnitude of the flight test data must be
significantly larger than the error of sensor measurement. The flight data cannot be used
for identification when its magnitude is close to the error of sensor measurement [14].
The second is that data cannot be collinear. It is very difficult to obtain unique and
definite identification results through conventional identification methods when the data
collinearity is obvious, because the models constructed by different parameter combinations
can respond similarly to the same input signal. The third is that the magnitude of the
aerodynamic force and moment coefficients, generated by variables of motion state and
control, must be significantly larger than the measured and estimated observation error. If
the magnitudes of the former are close to the observation error, the content of the flight
data will be covered by the observation error. It is likely to lead to an ill-conditioned
information matrix in identification [13,18]. It contributes to the failure of the identification
or the unreliability of identification results.

The identifiability of flight test data cannot be improved effectively through data
reconstruction methods, such as compatibility checks and flight path reconstruction. These
methods are usually based on the hypothesis that there is no wind [19–22]. Alternatively, the
wind disturbance is estimated as unknown variables. The influence of wind disturbance on
the small motion state variables (especially sideslip angle) is more obvious. It is difficult to
accurately measure and estimate wind disturbance, making iteration convergence difficult
when calculating sideslip angle.

When carrying out aerodynamic parameter identification, the effective content of
flight test data will be analyzed quantitatively, and the flight test data will be segmented on
the basis of the identifiability of aerodynamic derivatives. The steps are as follows:

(1) The variance of the observation error is estimated and used as the benchmark for the
observation error, the estimation formula is the following:

σ̂2 =

N
∑

i=1
[z(i)− ŷ(i)]2

(N − np)
(14)

where z is the observation variable, ŷ is the output of the least squares fitting model containing
all unknown parameters, N is the data length and np is the number of independent variables;

(2) The data segments whose observation magnitude is 5 times greater than the ob-
servation error are selected for identification, on the basis that the magnitude of
most data is obviously greater than the sensor measurement error and there is no
obvious collinearity;
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(3) On the basis of data segmentation in the previous steps, the aerodynamic deriva-
tives obtained from wind tunnel tests are used to calculate the magnitude of each
component of aerodynamic force and moment coefficients in the motion of aircraft.
Further, the data will be segmented according to the components and the magnitude
of aerodynamic force or moment coefficient generated by each motion variable and
control variable. The components of aerodynamic force and moment within the same
data segment should be similar so that identification can be carried out using the same
identification model. Aerodynamic force or moment coefficients generated by motion
variables and control variables should be significantly greater than the observation
errors to reduce its impact on identification results.

3.2. Identification Model Adaptation Method Based on Segmented Flight Test Data

If the identification model containing all the unknown derivatives is directly used
in the identification of segmented data, the identification results will not be satisfactory.
On the contrary, the accuracy of identification results will be affected negatively with the
error contained in the redundant independent variables in the model [1,2]. Therefore, it
is necessary to elaborate the optimal identification model for the selected data segment.
The aircraft motion variables and control variables in model [1,2] are taken as a set of
independent variable candidates, and the identification model structure fitting each data
segment is preliminarily determined by the stepwise regression method, which is widely
used for the determination of identification model [22,23]. The partial F test is used to
determine whether the independent variables have significant contribution to the regression
of observation variables under the given significance level (confidence level = 0.05 is
adopted in this paper), and then the identification model structure is determined [23,24].

Generally, due to the existence of errors in the aerodynamic derivatives obtained from
wind tunnel tests, the identifiability analysis and data segmentation of flight test data
with these derivatives are not absolutely good with precision. The identification model
structure determined by the stepwise regression method is often not optimal when the
segmentation scope of data is not properly selected. Therefore, it is necessary to further
tune the data segmentation and corresponding model structure according to the model
adaptation evaluation metrics, in order to make the data segment and identification model
adapt each other, to reduce the unfitted components in the residual error, and to remove
the redundant independent variables in the model. In this paper, the evaluation metrics
of model adaptation are goodness of fit (GOF), predicted square error (PSE) and Bayesian
information criterion (BIC).

(1) The fitting evaluation metric of the identification model to the observation variable.

GOF refers to the fitting degree of the identification model to the observation variable
and is used as an absolute metric to evaluate the fitting of the model to data.

GOF = 1 − (Z − Y)T(Z − Y)

(Z − Z0)
T(Z − Z0)

(15)

where Z is the observation vector composed of observed values of CY, Cl and Cn, and Z0
is the initial value of Z. Y is CY, Cl and Cn of the identification model output. The closer
GOF is to 1, the better the fitting is. A small GOF indicates that the main content in the
observation variable is not fitted by the model, and the identification model does not match
the observation variable [23,24].

(2) The fitting evaluation metric of the identification model structure of side force.

PSE is a widely used statistical metric to determine the model structure, which consists
of MSFE and overfitting penalty term [23,24]:

PSE = MSFE + σ2
max

P
N

(16)
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MSFE is mean squared fit error.

MSFE =
1
N
(Z − Y)T(Z − Y)

In Equation (16), constant σ2
max is a pre-estimate of the upper bound on the square

of the error between the data and the model; P is the number of independent variables
in the model, and N is the number of data points. MSFE represents the model fitting
characteristics, and σ2

maxP/N is the overfitting penalty term. The overfitting symbolizes
that the number of independent variables in the model is more than the independent
variables required to fit the observation variable. The side force identification model is
optimal in that PSE will increase regardless of whether the independent variable in the
model increases or decreases (in general, PSE is a small positive number).

(3) The fitting evaluation metric of the identification model structure of lateral-directional
moment.

In the excitation response of the lateral-directional control surface 3-2-1-1 input, the
roll moment is mainly generated by the asymmetric lift force of the wings on both sides,
and the yaw moment is mainly generated by the asymmetric side force of the front and rear
body and vertical tail of the aircraft. Generally, the magnitude of asymmetric lift force and
asymmetric side force is smaller than the side force of the whole aircraft; meanwhile, the
length of the moment arm between the asymmetric force and the gravity center is shorter
than the wingspan. As a result, the magnitude of CY is often larger than Cl and Cn; that
is, the orders of magnitude of MSFE of Cl and Cn is lower than CY, which may lead to
excessive weight of the penalty term for overfitting in PSE. Consequently, it is likely to
cause underfitting if PSE is used as a fitting metric of model adaptation [24,25]. Underfitting
denotes that the number of independent variables in the model is not enough to fully fit
the observation variable, and the model cannot fully describe the data characteristics. The
MSFE in BIC is converted into a logarithm to make the weight of MSFE greater when the
magnitude of observation is small. The BIC is as follows [24,25]:

BIC(α) = N ln(MSFE) + P ln(N) (17)

The first term of Equation (17) is the maximum likelihood function, which is used to
evaluate the fitting of the model; the second term is the penalty term for the increase of
independent variables in the model. The model with the maximum BIC absolute value is
used as the roll and yaw moment identification model (BIC is generally negative).

Fine-tuning the data segment scope and introducing a variable with the greatest
contribution to the fitting into the identification model, or removing the variable with the
least contribution to the fitting of the observation from the model, is essential for adaptation
of identification model structure and data segmentation. The side force identification model
structure is determined when GOF is close to 1 and PSE is minimum. The lateral-directional
moment identification model structure is determined when GOF is close to 1 and BIC has
the maximum absolute value.

To sum up, the process of data segmentation and model adaptation is as follows:

(1) Flight data is segmented based on requirements of identifiability. Firstly, the obser-
vation error is estimated, and the data segments whose observation value is 5 times
greater than observation error are selected for identification. Further, the data are
segmented according to the components and the magnitude of aerodynamic force
and moment coefficients generated by each motion variable and control variable;

(2) The model structure of each data segment is determined preliminarily through the
stepwise regression method. Then, the scope of the data segment and model structure
will be fine-tuned to make them adapt each other. The flow diagram of the data
segmentation and model adaptation method is shown as Figure 3:
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4. Aerodynamic Parameter Identification and Solution Method
4.1. Identification Procedure of Aerodynamic Derivatives

Based on the discussion in the two chapters above, the established identification
procedure of 12 lateral-directional aerodynamic derivatives is shown as Figure 4.
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As shown in Figure 4, DSMA is the data segmentation and model adaptation method.
Clδa and Clp are identified through the data segments of the initial stage of the response
of the 3-2-1-1 aileron input. Clδr, Cnδr, Cnβ, CYβ and CYδr are identified through the data
segments of the initial stage of the response of the 3-2-1-1 rudder input. Based on this, Cnr
is identified by selecting the data segment with good identifiability of Cnr. Then, the ratio
between δa, δr and β in steady heading sideslip and the identification results of Clδa and
Clδr are used to solve Clβ, and the results of Cnδr and Cnβ are used to solve Cnδa. Finally,
Cnδa, Cnδr, Cnβ and Cnr are used to identify Cnp through data segments with good Cnp
identifiability in the 3-2-1-1 aileron input response. Clδr, Clβ and Clp are used to identify Clr
through data segments with good Clr identifiability in the 3-2-1-1 rudder input response.

4.2. Least Squares Mixed Estimation for Step-by-Step Identification

At the initial stage of the aircraft response of aileron and rudder 3-2-1-1 inputs, the
control moment is the absolute dominant moment affecting the aircraft motion because
other variables are small, except for the control surface deflection angle. Additionally, other
weak moments have little influence on the aircraft motion. Therefore, the roll and yaw
moment identification model can be simplified as: Cl = Clδa δa + ∆Cl + vl

Cn = Cnδr δr + ∆Cn + vn
(18)
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where ∆Cl and ∆Cn represent the moment coefficients with relatively weak influence on
aircraft roll and yaw motion, but they are still identifiable. vl and vn are the fitting resid-
uals of rolling and yaw moment models, respectively. ∆Cl usually contains lateral static
stability moment and rolling damping moment coefficient; vl usually contains unidenti-
fiable components such as Cl observation error and cross moment coefficient produced
by yawing motion. ∆Cn usually contains directional static stability moment; vn usually
contains unidentifiable components such as Cn observation error, yawing damping moment
coefficient, and cross moment coefficient produced by rolling motion. The estimation of
Clδa and Cnδr can be completed directly based on identification model (18) through the
ordinary least squares method. The general form of the least squares identification model
is [1]:  y = Xθ

z = Xθ+ v
(19)

where θ = [θ0 θ1 . . . θn]T is the n × 1 aerodynamic derivative vector to be identified; y is the
N × 1 aerodynamic force or moment coefficient output vector; z is the N × 1 aerodynamic
force or moment coefficient observation vector; X is the N × n independent variable matrix
composed of the motion variables, control variables and other parameters of the aircraft; v
is the measurement error vector, which meets the white noise hypothesis:

E(v) = 0 E(vvT) = σ2I (20)

The least squares solution of the unknown parameter is

^
θ = (XTX)

−1
XTz (21)

The covariance of the estimation result is:

cov(
^
θ) = σ2(XTX)

−1
(22)

What should not be ignored is that, since vl and vn contain unidentifiable components
such as cross moment coefficient and yaw damping moment coefficient, their sequences are
time-correlated and their mean values are not zero. The magnitude of the unidentifiable
terms is small after the accomplishment of data segmentation and model adaptation; that
is to say, the unfitted component of the residual is basically in the same order of magnitude
as the observation error. Thus, the residual sequence can still be approximately treated as
white noise with no obvious impact on the accuracy of least squares estimation results.

In the initial motion stage after the aircraft has been controlled, the control moment is
the dominant moment, and the other moment components are small and can be ignored.
However, in other stages, the aircraft will also be actuated by damping moment, stability
moment and other components. At this moment, the measurement errors of aerodynamic
angle, angular velocity and other data will have a significant impact on the fitting. As the
dominant aerodynamic force and moment of the aircraft motion change constantly, the
impact of measurement errors of each data point on the fitting also changes constantly,
so it is difficult to obtain high-consistency identification results by the ordinary least
squares method. To obtain more accurate identification results, the least squares mixed
estimation method can be used for parameter identification, and the mean and variance
of aerodynamic derivatives obtained earlier can be used as prior information to identify
other aerodynamic derivatives. For some variables with prior information as constraints in
model (19), the constraint form is [1]

z1 = X1θ1 + ς (23)
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where X1 is a m × n (m < n) constraint matrix. z1 is a m × 1 specified observation vector.
θ1 is the subset of θ, which consists of some derivatives which have been identified. ς is a
random vector and represents the estimation error of prior information.

E(ς) ≈ 0, E(vςT) ≈ 0, E(ςςT) ≈ σ2V (24)

where V is a known matrix, representing the accuracy of prior information. The more
accurate the prior information is, the smaller the absolute value of elements in V will be.
The mixed model formed after the combination of (19) and (23) is[

z
z1

]
=

[
X
X1

]
θ +

[
v
ς

]
(25)

E
{[

v
ς

]}
= 0, E

{[
v
ς

][
v ς

]T
}

= σ2
[

I 0
0 V

]
The least squares solution of the mixed estimation is

^
θME =

(
XTX + XT

1 V−1X1

)−1(
XTz + XT

1 V−1z1

)
(26)

θ̂ME is the final identification result containing prior information and the derivative to
be identified.

5. An Example of Lateral-Directional Aerodynamic Derivative Identification

In this paper, the lateral-directional aerodynamic parameters are identified and vali-
dated using the flight test data of a conventional layout twin-engine jet civil aircraft. The
aircraft’s reference wing area is 128 m2 and its wingspan is 35 m. In order to reduce the
impact of the control system on aerodynamic parameter identification in the flight test, the
control law outer loop is disconnected, and only the inner-loop yaw damper is retained.
The yaw damper deflects the rudder during the response of the 3-2-1-1 aileron input; mean-
while, ailerons do not deflect during the response of the 3-2-1-1 rudder input. The flight
test is carried out at an altitude of 4500 m with a speed of 155 m/s. The random error of
sensor measurement is described by the root mean square error (RMSE) [14]. The RMSE of
angular velocity data is 0.02 ◦/s. The RMSE of sideslip angle data is 0.025◦, the RMSE of
acceleration data is 0.004 g, the RMSE of dynamic pressure data is 1 Pa and the RMSE of
airspeed data is 0.1 m/s.

5.1. Estimation of Angular Acceleration

The initial values of unknown parameters in model (8) are given in Table 1.

Table 1. Initial values of unknown parameters in generic aerodynamic moment model.

Cl Cm Cn

θ1 = −0.16 θ6 = 0.03 θ7 = −1.49 θ16 = 0.17 θ17 = −0.22

θ2 = −0.46 θ8 = −40.68 θ9 = −2.09 θ18 = −0.47 θ19 = 0.004

θ3 = 0.59 θ10 = −0.5 θ11 = 0 θ20 = −0.19 θ21 = 0

θ4 = −0.086 θ12 = 0 θ13 = 0 θ22 = 0

θ5 = 0.023 θ14 = 0 θ15 = 0

The differential data of angular velocity are used as the time reference for synchroniz-
ing the control surface deflection data with the angular velocity data. The cross-correlation
function values of AAR of the AVEM and differential signals of angular velocity data are
shown in the figure below. The values are obtained by moving control surface deflection
data different numbers of sampling periods forward and backward.
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Rxy of the vertical axis in Figure 5 is the cross-correlation coefficient of x-sequence
variables and y-sequence variables in formula (13). In Figure 5a,b, the x sequence is the
differential flight test data of roll and yaw angular velocity, respectively. The y sequence is
the roll AAR (pdot) and yaw AAR (rdot) of the AVEM, respectively. Rxy(pdot) represents the
cross-correlation coefficient between the differential data of roll angular velocity data and
the roll AAR of the AVEM. Rxy(rdot) represents the cross-correlation coefficient between the
differential data of yaw angular velocity and yaw AAR of the AVEM. It can be seen from
Figure 5 that the cross-correlation function between the angular accelerations of the AVEM
and the differential signals of the angular velocity data has the maximum value when
the angular acceleration sequence of the AVEM moved forward three sampling periods.
Therefore, it can be determined that the time delay of aileron and rudder data is three
sampling periods. The aileron and rudder data should be moved forward three sampling
periods. After the synchronization calibration, the angular velocity data can be fitted again
to obtain the AVEM with higher accuracy. Iteration results of unknown parameters are
shown in Table 2.
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Figure 5. Cross-correlation function values of AAR of AVEM and differential signals of angular
velocity data. (a) Roll angular velocity; (b) Yaw angular velocity.

Table 2. Iteration results of unknown parameters in generic aerodynamic moment model.

Cl Cm Cn

θ1 = −0.18 θ6 = 0.05 θ7 = −1.03 θ16 = 0.11 θ17 = −0.22

θ2 = −0.37 θ8 = 30.29 θ9 = −2.12 θ18 = −0.32 θ19 = 0.51

θ3 = 0.68 θ10 = −80.80 θ11 = −24.49 θ20 = −0.19 θ21 = −0.43

θ4 = −0.078 θ12 = 0.045 θ13 = 5.17 θ22 = 27.5

θ5 = 0.039 θ14 = −0.01 θ15 = 0

The 3-2-1-1 aileron input is taken as an example to show the fitting of the AVEM to
angular velocity data at this moment, as shown in the Figure 6.
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Figure 6 shows that the roll velocity response of the AVEM and the flight test data
nearly overlap after time-delay calibration of control surface deflection data. The angular
acceleration of the AVEM is used as the estimation of angular acceleration to calculate the
observation of moment coefficient.

5.2. The Identification of Clδa, Clp

5.2.1. Data Segmentation

Identification analysis and data segmentation are carried out for the flight data of
the aircraft’s response to the 3-2-1-1 aileron input. First, the observation Cl of the rolling
moment coefficient of the aircraft is calculated by Equation (2) based on the estimated
angular acceleration. Then, the variation of each rolling moment component is calculated
by Equation (1) based on both aerodynamic derivatives (Clδa, Clδr, Clβ, Clp and Clr) gained
from wind tunnel tests and the flight test data such as aileron deflection, roll angle velocity
and sideslip angle, as shown in Figure 7.
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The variance of Cl observation error is estimated by Equation (14) firstly. The standard
deviation of the estimation error is about 3.5 × 10−4, and ±3.5 × 10−4 is taken as the
Cl observation error bound (errorm in the Figure 7b). As can be seen from Figure 7a, the
magnitude of Cl from 9.5 to 17 s is significantly greater than the observation error. Therefore,
9.5~17 s data are preliminarily selected for parameter identification.

Based on this, data are further segmented according to the variation of moment
components, as shown in Figure 7b. The maximum absolute value of aileron rolling
moment coefficient Cl(δa) is 6.2 × 10−3 and the maximum absolute value of roll damping
moment coefficient Cl(p) is 2.4 × 10−3 within the range of 9.5~10.2 s, which are both larger
than 5 times Cl errors. The maximum absolute values of lateral static stability moment
coefficient Cl(β), control moment coefficient of rudder Cl(δr) and cross moment coefficient
produced by yaw motion Cl(r) are 1.3 × 10−4, 2.0 × 10−4 and 8.2 × 10−5, respectively,
which are all smaller than Cl errors. In the range of 9.5~10.2 s, Cl(δa) plays a dominant role
in the rolling motion, followed by Cl(p). Cl(β), Cl(r) and Cl(δr) have almost no influence
on the rolling motion, which is beneficial to the identification of Clδa. The data segment is
numbered 1 for the identification of Clδa, and its suffix is I. There are 22 data points in this
data segment.

In the time scope of 10.4~13.0 s, the maximum absolute values of Cl(δa), Cl(p) and
Cl(β) are 8.9 × 10−3, 6.8 × 10−3 and 2.3 × 10−3, respectively, which are all much larger
than 5 times Cl errors. The maximum absolute values of Cl(δr) and Cl(r) are 2.0 × 10−4 and
1.0 × 10−4, respectively, which are both smaller than Cl errors. In this data segment, Clδa,
Clp and Clβ are identifiable. Cl(p) is one of the dominant moments of rolling motion, and
this data segment is beneficial to Clp identification. This data segment is numbered 2, and
its suffix is II. There are 86 data points in this data segment. The identification of Clp is
carried out with this data segment by using Clδa identification results as prior information.
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Compared with Cl(δa) and Cl(p), Cl(β) has weaker influence on rolling motion, and
there are less data available for Clβ identification in the data of whole response. Considering
the poor measurement accuracy of sideslip angle, the identifiability of Clβ in the data
reduces, making it difficult to obtain reliable identification results. Both Cl(δr) and Cl(r) in
the whole response data are smaller than Cl error, indicating that the information of Cl(δr)
and Cl(r) in the 3-2-1-1 aileron input response data would be covered by Cl error. A reliable
Clδr and Clr cannot be obtained. In other words, the contribution of Cl(δr) and Cl(r) to the
Cl fitting should be treated as colored noise during identification.

From the analysis above, it can be seen that, in the data of response to the 3-2-1-1
aileron input shown in Figure 7b, the identifiability of Clδa and Clp are good, Clβ is poor,
and Clr and Clδr are unidentifiable. Data segments 1 and 2 have different identifiability;
thus, they need to be identified by different identification models. In view of the fact that
Clδa and Clp can be obtained through the data segments 1 and 2, at the same time, Clβ, Clr
and Clδr cannot be accurately identified through the data of any parts in the 3-2-1-1 aileron
input response, making data segmentation meaningless. The identification of Clβ, Clr and
Clδr will be carried out in the following descriptions with the data of the 3-2-1-1 rudder
input and SHSS.

5.2.2. The Adaptation of Data Segments and Identification Models

After the data are segmented preliminarily, stepwise regression is used to determine
the identification model structure corresponding to each data segment. At the confidence
level of α = 0.05, δa and p in data segment 1 have significant contribution to Cl regression,
and the identification model structure of data segment 1 is as follows:

Cl = Clδa δa + Clp p + v (27)

where v is the Cl fitting residual, including components such as rudder rolling control
moment coefficient Cl(δr) and cross moment coefficient produced by yaw Cl(r). In this paper,
all of the fitting residuals v in different identification models contain unfitted components,
whose sequences are time-dependent and mean values are not zero. This will not be
repeatedly illustrated below. The identification model structure of data segment 2 can also
be determined by stepwise regression, and the model structure is as follows:

Cl = C̃lδa δa + Clp p + Clββ + v (28)

where, the derivative with “~” overline means the obtained identification results are used as
prior information in identification, the same as below. The scope of data segment and model
structure are tuned to make the absolute value of BIC maximized when GOF is closest to 1.
Finally, the time scope of segment I is 9.5~10.2 s, denoted as RO1_I, and the corresponding
model structure is (27). At this time, The GOF is 0.995, indicating that the data can almost be
completely fitted by the model. The BIC of model (27) for RO1_I is −381. β is the variable
having the most significant contribution to Cl fitting among the independent variables
not introduced into model (27). After its introduction into model (27), BIC is −379. p is a
variable with relatively weak contribution to Cl fitting in model (27), and BIC is −349 after
it is removed. The absolute value of BIC of the original model (27) is the largest, and the
RO1_I data segment matches model (27).

The scope of segment II is determined to be 11.6–12.8 s using the same method, and is
denoted as RO1_II with the suitable model (28). There are 40 data points in the segment.
GOF is 0.998 and BIC is −704. The segmented scopes of RO1_I and RO1_II are shown in
Figure 8.
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Figure 8. Data segments of response of aileron 3-2-1-1 input for rolling moment derivative identification.

5.2.3. Parameter Estimation

Clδa is estimated through model (27) and RO1_I by the ordinary least squares method.
Clδa is −1.15 × 10−3, and its variance is 7.56 × 10−10; Clp is −6.13 × 10−3, and its variance
is 4.24 × 10−7. The estimation of Cl fitting error of the identification model is 3.27 × 10−4;
the fitting error estimated by Equation (14) is 2.59 × 10−4, and the difference between them
is small. It indicates that the identification results for RO1_I using simplified model (27) is
similar to those gained using the model containing all independent variables.

The identification results of Clδa obtained by the ordinary least squares method are
substituted into Equation (25) as prior information, and the least squares mixed estimator is
used to estimate Clp through model (28) and RO1_II. Clp is −6.17 × 10−3, and its variance is
3.96 × 10−8; Clβ is −3.24 × 10−3, and its variance is 1.80 × 10−9. The estimation of Cl fitting
error σ̂ is 3.53 × 10−4. The fitting error estimated by Equation (14) is 2.45 × 10−4. The
slight difference between the two fitting errors indicates the identification results obtained
from RO1_II, using the simplified model (28) and prior information of Clδa, are similar to
the results obtained through the model containing all independent variables.

5.3. The Identification of Cnδr, Clδr, Cnβ, Cnr, CYδr and CYβ

The process of data segmentation and model adaptation using the data of the 3-2-1-1
rudder input response is similar to that mentioned above, which will not be described
here. The results of data segmentation, model adaptation and identification of aerodynamic
derivatives are directly presented here. The data segments used for identification of Cnδr,
Clδr and Cnβ are denoted as YA1-I, and the data segments used for Cnr identification are
denoted as YA1-II, as shown in Figure 9.

The rolling and yaw moment identification model adapting data segments YA1 is
as follows:  Cl = Clββ + Clδr δr + v

Cn = Cnββ + Cnδr δr + v
(29)

The yaw moment identification model adapting data segments YA1-II is:

Cn = C̃nββ + C̃nδr δr + Cnp p + Cnrr + v (30)
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The results obtained through YA1-I and model (29) are as follows: Cnδr is −3.13 × 10−3;
Cnβ is 3.12 × 10−3; Clδr is 0.90 × 10−3. Based on the identification results of Cnδr and Cnβ,
Cnr obtained through YA1-II and model (30) is −6.53 × 10−3.
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Figure 9. Data segments of response of rudder 3-2-1-1 input for yaw moment derivative identification.

It should be noted that Clβ and Cnp will be solved and identified through the steps in
Section 5.4 according to the identification procedure in Figure 4. Clβ in model (29) and Cnp
in model (30) are to ensure the model can fully fit data segments with no identification of
their values. Thus, specific identification results are not given here.

The estimated error of CY is about 2.2 × 10−3 according to Equation (14). The maxi-
mum values of CY(δr) and CY(β) are about 1.5 × 10−2 and 3.0 × 10−2, respectively, which
are more than 5 times larger than the errors of CY. Therefore, CYδr and CYβ can be identified.
The data segments used for identification of CYδr and CYβ are denoted as YA1-III, as shown
in Figure 10.
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Figure 10. Data segments of response of rudder 3-2-1-1 input for side force derivative identification.
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The side force identification model adapting the data segments YA1-III is:

CY = CYββ + CYδr δr + v (31)

The identification results of CYδr and CYβ, obtained through YA1-III and model (31),
are 7.83 × 10−3 and −2.05 × 10−2, respectively.

5.4. Solution of Clβ and Cnδa

The flight data of steady heading sideslip do not need to be segmented, since each
motion state variable during trim flight could be regarded as stable. The flight test data
under trim state are shown below.

In Figure 11, ailerons, rudder, lateral acceleration and sideslip angle all show obvious
ladder pattern characteristics. In order to reduce the disturbance of measurement error
on the trim, the mean value of data within every 5 s is used as the value of the data. The
relationship between sideslip angle and rudder deflection in steady heading sideslip is
obtained by linear regression. The ratio of sideslip angle, rudder deflection angle and
aileron deflection angle is 1:0.926:−2.338. The ratio is relatively stable and accurate and
is used for the identification and solution of subsequent parameters as prior information.
With the constraint of steady heading sideslip, as well as the obtained identification results
of Clδa and Clδr, Clβ solved by Equation (7) is −3.52 × 10−3. Cnδa solved by Equation (7)
is 0.09 × 10−3 using the identification results of Cnδr and Cnβ and the steady heading
sideslip constraint.
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Figure 11. The flight test data of control and motion variables in steady heading sideslip.

5.5. Identification of Cross Derivatives

Clδa, Clp and Clβ are identified and solved by the data of the 3-2-1-1 aileron input
and steady heading sideslip. Cnβ, Cnδr, Cnδa, Cnr and Clδr are identified and solved by
the data of the 3-2-1-1 rudder input. These results are used as prior information for cross
derivative identification. The response data segments of the 3-2-1-1 aileron input used for
Cnp identification are denoted as RO1-III, as shown in Figure 12.
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Figure 12. Data segments of response of aileron 3-2-1-1 input for Cnp identification.

The yaw cross derivative identification model adapting the data segments RO1-III is:

Cn = C̃nββ + C̃nδa δa + C̃nrr + (C̃nδr δr) + Cnp p + v (32)

The identification result of Cnp is −1.70 × 10−3. The data segmentation and model
adaptation processes of Clr identification are similar to those of Cnp, which will not be
elaborated here. The identification result of Clr obtained through the response data of the
3-2-1-1 rudder input is 3.34 × 10−3.

6. Validation of the Identification Results
6.1. Comparison and Analysis of Identification Results

The identification results gained by the conventional MLE method are presented here
to make comparison with the DSMA method in terms of consistency and accuracy of the
identification results. Unlike the data required in DSMA method, the MLE method requires
continuous data. As an excitation signal widely adopted in MLE identification, a combined
aileron and rudder doublet signal input is used for obtaining continuous flight test data.
The flight test data used for comparison of the two different identification methods are
obtained at the same altitude and Mach number. The four groups of combined aileron and
rudder doublet input response data are denoted as AR1, AR2, AR3 and AR4. AR1 is shown
in Figure 13.

Figure 13 shows that the deflection amplitudes of rudder and aileron in the combined
doublet input are similar to deflection amplitudes in the 3-2-1-1 aileron and rudder inputs,
which can fully excite the lateral-directional motion and produce obvious roll, yaw angular
velocity and lateral acceleration. The four groups of response data of the 3-2-1-1 rudder
input are denoted as YA1, YA2, YA3 and YA4. The four groups of response data of the
3-2-1-1 aileron input are denoted as RO1, RO2, RO3 and RO4. Identification results of
aerodynamic derivatives are shown in Table 3.

As can be seen from Table 3, compared with the conventional MLE method, the consis-
tency of results obtained by the DSMA method is significantly improved. The dispersion
coefficient (the ratio of standard deviation to mean [25,26]) is used to quantitatively analyze
the consistency of identification results. The absolute values of the dispersion coefficient
obtained through the two methods are shown in Figure 14.
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Figure 13. Flight test data of response of combined rudder and aileron doublet input for MLE
identification.

Table 3. Identification results of aerodynamic derivatives.

The Number
of Dataset RO1 + YA1 AR1 RO2 + YA2 AR2 RO3 + YA3 AR3 RO4 + YA4 AR4

Estimation
Method

DSMA
(×10−3/◦)

MLE
(×10−3/◦)

DSMA
(×10−3/◦)

MLE
(×10−3/◦)

DSMA
(×10−3/◦)

MLE
(×10−3/◦)

DSMA
(×10−3/◦)

MLE
(×10−3/◦)

CYδr 7.83 7.42 7.52 8.31 7.77 7.68 7.82 8.82
CYβ −20.5 −21.9 −19.8 −24.3 −20.8 −21.9 −20.3 −20.4
Clδa −1.15 −1.33 −1.17 −1.38 −1.11 −1.36 −1.19 −1.24
Clδr 0.90 0.89 0.93 0.84 0.98 0.77 0.90 0.97
Clβ −3.52 −3.69 −3.59 −4.83 −3.44 −3.53 −3.61 −4.66
Clp −6.17 −6.47 −6.17 −7.17 −6.14 −6.14 −6.14 −7.39
Clr 3.34 4.88 4.28 1.82 3.44 4.37 2.76 4.91

Cnδr −3.13 −3.31 −2.99 −3.41 −3.12 −3.44 −3.11 −3.45
Cnδa 0.09 0.06 0.16 −0.17 0.11 −0.05 0.04 −0.04
Cnβ 3.12 3.47 3.15 2.62 3.14 3.14 2.98 3.02
Cnp −1.70 −2.55 −1.53 −3.61 −1.80 −2.74 −1.51 −2.53
Cnr −6.53 −2.73 −6.41 −4.33 −6.58 −5.72 −6.50 −1.25

As can be seen from Figure 14 and Table 3, for CYβ, CYδr, Clδa, Clδr, Clβ, Clp, Cnδr, Cnβ

and Cnp with significant contribution to aircraft motion in the excitation response, the
absolute values of dispersion coefficients obtained by DSMA and MLE are small. For
example, the absolute values of dispersion coefficients of Clδa obtained by DSMA and
MLE are 3.0% and 4.7%, respectively, and the distribution intervals of absolute values are
1.11 × 10−3~1.19 × 10−3 and 1.24 × 10−3~1.38 × 10−3, respectively. The absolute values
of dispersion coefficients of Cnβ obtained by DSMA and MLE are 2.6% and 11.5%, respec-
tively, and the distribution intervals of absolute values are 2.98 × 10−3~3.15 × 10−3 and
2.62 × 10−3~3.47 × 10−3, respectively. Compared with the MLE method, the distribution
interval of DSMA results is more concentrated, and the consistency of the results is higher.
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For Clr, Cnδa and Cnr with relatively slight contribution to aircraft motion in the excita-
tion response, the identification results are less consistent. The distribution intervals of abso-
lute value of MLE identification results of the three derivatives are 1.82 × 10−3~4.91 × 10−3,
0.04 × 10−3~0.17 × 10−3 and 1.25 × 10−3~5.72 × 10−3, respectively, and the corresponding
dispersion coefficients are 37%, 188% and 55%, respectively. The consistency of the re-
sults is poor. The absolute value distribution intervals of DSMA identification results
of the three derivatives are 2.76 × 10−3~4.28 × 10−3, 0.04 × 10−3~0.16 × 10−3 and
6.41 × 10−3~6.58 × 10−3, respectively, and the corresponding dispersion coefficients are
18%, 50% and 2%, respectively. The dispersion degree of the identification results ob-
tained by DSMA is significantly lower than that of MLE, and the consistency of the results
is higher.

Since the flight dynamics model of the aircraft has errors, and the data measurement
noise is, in fact, not white noise, there are errors in the optimization constraint index estab-
lished with the similarity between the aircraft motion response and flight test data. This
results in inconsistent identification results obtained by using different data. The impact of
constraint index error will be reduced by selecting data segments with a larger magnitude
of the variable corresponding to the derivative to be identified, and by introducing trim
results of steady heading sideslip and accurate identification results as prior information.
Further, the accuracy and consistency of identification results are improved effectively.

6.2. Validation of the Identification Results

The lateral-directional small-disturbance linearized motion model of aircraft is estab-
lished by the aerodynamic derivative identification results in Table 3 [26]. The identification
results are comprehensively validated by comparing the motion model responses and flight
test data with the same control input. The lateral-directional small-disturbance linearized
motion model of aircraft is as follows:

.
x = Ax + Bu (33)

A =


Yβ α∗ + Yp Yr − 1 g cos θ∗/V∗

Lβ Lp Lr 0

Nβ Np Nr 0

0 1 tan θ∗ 0

 (34)

x =
[
∆β ∆p ∆r ∆φ

]T (35)
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B =

[
0

Yδr

Lδa

Lδr

Nδa

Nδr

0
0

]T

(36)

u =
[
∆δa ∆δr

]T (37)

The symbols with * in the Equation (34) indicate that they are the base value of the
trim flight. The flight test data with aileron and rudder inputs are selected to validate
the identification results. Aileron and rudder deflection data are taken as the input of the
linearized model. The comparisons between motion model response and flight test data
are shown in Figure 15.
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Figure 15. Mathematical simulation validation of the identification result. (a) Responses of recon-
structed model based on MLE identification results; (b) Responses of reconstructed model based on
DSMA identification results; (c) Aileron and rudder deflection data.

Figure 15 shows that the linearized model established on the basis of DSMA results
fits flight test data well, and the model established on the basis of MLE results basically
fits the flight test data in the first 50 s of simulation, and the errors of yaw velocity and
roll angle response of the model increase significantly after 50 s of the simulation. This
indicates the identification of derivatives with significant contribution to aircraft motion
in MLE results is relatively accurate, while the identification accuracy of derivatives with
slight contribution to aircraft motion is poor. It can be further illustrated with Figure 15a
that significant differences between model response and flight test data emerge after 50 s of
simulation. The GOF of response of the aircraft linearization model, reconstructed through
identification derivatives obtained by different methods, to flight test data is shown in
Table 4.

Table 4. GOF of different linearization models of aircraft motion to flight test data.

GOF β p r φ

DSMA 0.8638 0.9207 0.9260 0.9494
MLE 0.6808 0.7350 0.5454 0.3627
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The GOF values of p, r, and φ response of the linearized model to the flight test data
are all greater than 0.92, except that the GOF of β is slightly lower at 0.86, caused by
large measurement noise and error. This GOF is similar to the fitting results achieved
by the accurate lateral-directional dynamics model finally obtained in reference [24]. It
indicates that the linearized aircraft motion model reconstructed with the lateral-directional
aerodynamic parameter identification results obtained by DSMA can fit the flight test data
well, and the identification results are accurate and reliable. The GOF of β, p, r, and φ
response of the linearized model reconstructed using the MLE identification results to the
flight test data is 0.68, 0.74, 0.55 and 0.36, respectively. They are obviously smaller than the
GOF gained from the model based on DSMA results, which also indicates that the accuracy
of identification results based on MLE is relatively low.

Contrast of the two methods’ results show that selecting valid data with large mag-
nitude through data segmentation and introducing more accurate identification results
of derivatives as a priori restraints can effectively improve the identification accuracy of
the aerodynamic derivatives. Especially for derivatives such as Clr and Cnδa with small
absolute value and slight contribution to aircraft motion, the identification accuracy has a
more significant improvement.

7. Conclusions

(1) The step-by-step lateral-directional aerodynamic parameter identification procedure
is established. First, Clδa and Clp are identified by the 3-2-1-1 aileron input; at the same
time, CYδr, CYβ, Cnδr, Cnβ, Cnr and Clδr are identified by the 3-2-1-1 rudder input. Next,
Clβ and Cnδa are solved through the ratio between sideslip angle, aileron deflection
angle and rudder deflection angle in steady heading sideslip. Finally, the identification
results gained in the steps above are used as prior constraints for the identification of
cross derivative Cnp and Clr.

(2) The angular acceleration estimation method based on the angular velocity equivalent
model is established. Firstly, an angular velocity equivalent model is established based
on the generic aerodynamic moment model and the rotational dynamics equations of
aircraft, and the unknown parameters in the model are iterated to make the angular
velocity response of the model fit the angular velocity flight data. Then, the time delay
between angular velocity data and control surface deflection data is calibrated by
using the cross-correlation function between the angular acceleration response of the
angular velocity equivalent model and the differential signal of angular velocity data.
Finally, the unknown parameters are iterated once again to fit angular velocity data
using the calibrated control surface deflection data, and the angular acceleration of
the equivalent model at this moment is used as the estimated angular acceleration for
aerodynamic parameter identification when conducting flight tests.

(3) An aerodynamic parameter identification method using segmented adaptation of
identification model and flight test data is established. First, the flight test data is
segmented preliminarily according to the components as well as the magnitude of
aerodynamic force and moment coefficients generated by each variable. Secondly, the
scope of data segmentation and the structure of the identification model is determined
by stepwise regression and model-fitting metrics combination. Thirdly, the aerody-
namic derivative is estimated in stages through the ordinary least squares method and
least squares mixed estimator according to the established identification and solving
procedure, and Clβ and Cnδa are solved by using the constraint of steady heading
sideslip and the accurate prior identification results.

(4) The identification and validation of lateral-directional aerodynamic derivatives are
carried out with the DSMA identification method and the conventional MLE identifi-
cation method. Compared with the conventional MLE method, the lateral-directional
aerodynamic derivatives obtained by the DSMA identification method have a higher
accuracy and consistency because valid data segments with good identifiability are
selected and the obtained accurate identification results and steady heading sideslip
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trim results are used as prior constraints. Especially for derivatives with small abso-
lute value and slight contribution to aircraft motion, the improvement of identification
accuracy is more significant.

The flight test scheme proposed in this paper is simple and can be easily operated by
pilots. The identification algorithm of the identification method is also simple and practical,
and the results are reliable.
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Nomenclature
The following symbols are used in this manuscript.

Cl rolling moment coefficient
Cm pitch moment coefficient
Cn yaw moment coefficient
CY side force coefficient
.
p roll angular acceleration (◦/s2)
.
q pitch angular acceleration (◦/s2)
.
r yaw angular acceleration (◦/s2)
ay side acceleration (m/s2)
α attack angle (◦)
β sideslip angle (◦)
p roll velocity (◦/s)
q pitch velocity (◦/s)
r yaw velocity (◦/s)
p dimensionless roll velocity
q dimensionless pitch velocity
r dimensionless yaw velocity
δa aileron deflection angle (◦)
δe elevator deflection angle (◦)
δr rudder deflection angle (◦)
ρ air density (kg/m3)
Q dynamic pressure (Pa)
S reference wing area (m2)
b wingspan (m)
Ixx moment of inertia with respect to roll axis (kg·m2)
Iyy moment of inertia with respect to pitch axis (kg·m2)
Izz moment of inertia with respect to yaw axis (kg·m2)
Ixz product of inertia (kg·m2)
CYβ side force derivative
CYδr rudder side force control derivative
CYr side force derivative due to yaw
CYp side force derivative due to rolling
Clβ lateral stability derivative
Clδa aileron rolling control derivative
Clδr rudder rolling control derivative
Clr rolling cross derivative
Clp rolling damping derivative
Cnβ directional stability derivative
Cnδa aileron yaw control derivative
Cnδr rudder yaw control derivative
Cnr yaw damping derivative
Cnp yaw cross derivative
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