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ABSTRACT 
 

Periodontitis is a chronic inflammation of tooth supporting tissues (periodontal ligament, alveolar 
bone and gingiva). Due to the chronic and intensive inflammation, these tissues undergo 
accelerated cellular senescence (premature cells cycle arrest). This accelerated cellular 
senescence ends up with their degeneration and dramatic changes in the normal aesthetic and 
architecture of the bone and gingiva of the affected individual. This review will provide insights into 
the detrimental and inevitable effect of inflammatory cellular senescence during periodontal 
disease progression. 
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1. INTRODUCTION 
 

Periodontal disease is an inflammatory disease 
that involves the supporting tissues of teeth and 
affects almost 90% of the population [1,2]. The 

main aetiology for causing this disease is 
bacterial infection in the periodontal region and  
in mostly associated with a progressively 
destructive changes of the affected structures 
surrounding the tooth. In severe cases, extreme 
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loss of bone and periodontal ligament supporting 
the teeth may eventually lead to the loss of these 
teeth [3,4]. 
 

Usually, cells undergone senescence due to 
aging, or in reaction cellular damage, toxic 
environments, or due to cell inability to replicate 
as it reaches the end of its life span [5]. Some of 
the senescent cells are eliminated by the 
immune system, but in certain circumstances, 
especially by late life, huge number of these cells 
would remain and linger that results in the 
accumulation a sizable proportion of senescent 
cells in the tissue [6]. In general, senescent cells 
would affect the tissue negatively by releasing 
molecules that interfere with the normal cellular 
activities, provoke chronic inflammation, and 
destroy the extracellular matrix that is essential 
to tissue properties such as elasticity or load-
bearing strength [7]. Hence, comprehensive 
clearance and elimination of senescent cells 
should produce greater benefits to health as 
compared to partial or uneven removal of these 
cells [8]. 
 

Senescent cells must be cleared first and then be 
replaced by other cells that perform healing and 
regeneration [9]. Without new cells migrating into 
the inflamed or damaged scene, probably the 
healing process will not take place as usual [10]. 
Protecting or saving the cells from reaching 
senescence stage (before /during periodontal 
inflammation) would be a better solution because 
once these cells reach the senescence stage, 
they will not be, any more, part of the healed 
inflamed tissues. Furthermore, naturally 
establishing a new batch of cells with almost 
similar architecture to replace the senescent cells 
is a hard task especially for the exposed or 
inflamed periodontium with the unique 
environment of the oral cavity [11,12]. 
 

Rejuvenating or saving periodontal cells from 
senescence and preserving the normal steps of 
cells cycle; are crucial factors to prevent the 
destruction of the tooth supporting tissues. 
Hence, clinically, senescence can be used as a 
target to suppress or at least minimize the almost 
inevitable loss of supporting tissues. 

 

2. INFLAMMATORY INDUCED 
SENESCENCE 

 

It has been reported that gingival fibroblasts were 
incubated and treated with LPS in vitro for 24 
and 48 h, to simulate inflammation and induce 
cellular senescence [13]. LPS result in the 
induction of ROS [14)] which damage the 

gingival fibroblast DNA. Furthermore, DNA 
damage potentiates the release of pro-
inflammatory cytokines, apoptosis and 
senescence as a factor of p53 status [15]. The 
inflammatory cytokines are main factors in the 
initiation and maintenance of cellular 
senescence, and they are also responsible for 
initiating an innate immune response that 
eliminates the senescent cells in vivo [16]. 
 
It has been reported that fading senescent cells 
have the ability to produce and secrete various 
inflammatory cytokines, mediating chemokines 
and matrix remodelling molecules [7,17] that 
detrimentally affect tissue matrix homeostasis 
and elicit a chronic inflammation. Therefore, 
individuals especially elderly people are more 
prone to a number of autoimmune diseases and 
inflammatory diseases, including periodontitis 
[18,19]. 
 
In periodontitis, the cells of the periodontium are 
obviously degraded and cleared by phagocytes, 
subsequently this process results in the loss of 
attachment and alveolar bone. Recent studies 
have shown that senescent myofibroblasts were 
limiting the extent of fibrogenesis associated with 
wound healing during tissue repair [20]. 
 
Phagocytic cells activity has an important role in 
subsiding the inflammation through engulfing and 
eliminating the apoptotic cells, which 
subsequently reduce the exposure of tissues to 
the harmful effect of the inflammatory and 
immunogenic contents of fading cells [21]. 
 
Clearance of the senescent cells is a crucial step 
to maintain the function and restore the normal 
un-damaged condition of the tissue. Therefore, 
tissue dysfunction can be expected in chronic 
pathological conditions as the senescent cells 
are not effectively eliminated, leading to their 
accumulation in the tissue [22], a condition which 
would further aggravate the inflammation and 
debilitate the normal surrounding cells [23]. It has 
been concluded that the double-edged sword of 
senescence is similar to that of inflammation; 
hence, senescence is beneficial when it is 
temporary and effectively cleared but 
pathological if it is chronically lasting and un-
cleared [24]. These expressions and 
complexities of senescence would require further 
investigations to determine the therapeutic 
pathway, either by increasing or blocking 
senescence, depending on the context [9,25]. In 
periodontitis, chronic inflammation causes un-
replaceable loss of the damaged periodontium. 
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Hence, blocking of senescence would be one of 
the important targets in the periodontal therapy 
[26]. 
 

3. INFLAMMATORY SENESCENCE AND 
DNA DAMAGE RESPONSE 
RELATIONSHIP 

 
More than half a century ago, Hayflick and 
Moorhead concluded that cultured primary 
human cells have a restricted replication capacity 
[27]. It has been demonstrated that after 
repeated cell divisions, these cells moved into a 
permanent cell cycle arrest condition, which is 
termed replicative or cellular senescence where 
normal diploid cells are unable to divide [28]. 
Cellular replication induces telomere shortening 
that ultimately triggers a DNA damage response 
associated with permanent cell cycle arrest, a 
condition called replicative senescence [28,29]. It 
has been stated that senescence is a model-in-
miniature of events leading to aging or 
degenerating and fading of organism [27]. 
 

Senescence is driven by intracellular signals 
which remained unclear until the discovery of 
telomere erosion and telomerase. Telomeres are 
made of repetitive nucleotide sequences at each 
end of a chromosome and protect them from 
degradation or fusion with neighbouring 
chromosomes. Telomeres undergo erosion 
during the division of cell, therefore, telomeres 
have been used as a “molecular clock” that 
determines how many times a cell can divide 
before attaining replicative senescence [30]. 
Telomerase, also called telomere terminal 
transferase, is an enzyme made of protein and 
RNA subunits and it adds a specific-dependent 
to end of telomere [31,32]. Activated telomerase 
promotes division potential of several types of 
cultured primary cells, such as fibroblasts [33]. 
Reduced activity of telomerase leads to 
shortening of telomeres which subsequently lose 
their protective function [34], this is followed by a 
DNA damage response (DDR) which stimulates 
suppressing factors that interrupt the progression 
of cells cycle, a process which ends up with 
cellular senescence [35]. 
 
Telomere erosion is not the only cause for 
cellular senescence [6,36]. Other causes that 
provoke DDR, such as various types of oxidants, 
gama-irradiation, ultraviolet light, and certain 
chemotherapies, can also induce senescence 
[37-39].  
Cellular stress eliciting a DDR can also trigger a 
programmed cell death which is called apoptosis. 

Apoptosis is a step ahead to remove the 
damaged, degraded or pre-neoplastic cells. This 
will be followed by phagocytosis to clear the 
apoptotic senescent cells. Senescent cells 
actively express and secret several types of 
extracellular modulators such as chemokines, 
cytokines, and matrix-remodelling enzymes 
known as senescence-associated secretory 
phenotype (SASP) [40-42]; are also responsible 
for promoting the clearance of senescent cells by 
the host immune system or provoke autocrine 
signalling to sustain the cell senescent state [40, 
42,43]. 
 
DDR also leads to the induction of nuclear factor 
kappa B (NF-kB). NF-kB orchestrates the cell 
survival pathway, and, together with the 
coordination of cell-cycle check points and            
DNA repair, it enables the cell with limited 
damage to restore and continue a normal life 
cycle, unharmed [44]. It has been reported that 
during inflammation or induction by reactive 
oxygen species, the cells produce a signalling 
pathways that link DNA damage in the nucleus 
with activation of NF-κB in the cytoplasm [45]. 
Other studies found that DNA damage-
dependent NF-κB stimulation may play an 
undesirable role in induction of cellular 
senescence, especially with persistence of DNA 
damage [46]. 

 
4. EFFECT OF INFLAMMATORY 

INDUCED SENESCENCE ON 
PERIODONTAL TISSUES HEALING 
AND CELLS MIGRATION 

 
4.1 Biology of Oral Periodontal Wound 

Healing and Cell Migration 
 
Hammerle & Giannobile [47] had carried out a 
thorough search the literature related to the 
healing of oral tissues and concluded a 
“Consensus Report of Group 1 of the 10th 
European Workshop on Periodontology” which 
stated that “oral soft tissue healing at teeth, 
implants andthe edentulous ridge follows the 
same phases as skin wound healing” [47]. 
However, the same study recommended that 
there is a necessity to appropriately outline valid 
and reproducible pre-clinical models for the 
assessment of procedures of soft tissue 
regeneration around teeth and implants. In 
another study, Hakkinen et al. [48] concluded 
that the basic wound healing events of gingival 
tissues are similar to the healing principles at the 
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tooth-gingiva interphase, especially above the 
crest of alveolar bone [48]. 
 
During evolution, wound healing has become 
physiologically well preserved due to its crucial 
importance for survival [48,49]. Many factors and 
molecules involved in wound healing appear to 
work and intersect the functions of each other. It 
has been reported that during wound healing, 
certain factors responsible for embryonic 
development are also existed in the granulation 
tissue (10). Epithelial cells involved in wound 
healing are found to contain extracellular matrix 
receptors that are not usually exist in other 
epithelial cells [50]. In addition, special 
phenotype of fibroblasts are also found in the 
granulation tissue during healing [51-53]. 
 
Wound repair requires the participation of several 
types of cells, such as macrophages, fibroblasts, 
and contractile myofibroblasts, during the 
proliferative phase [54]. Myofibroblasts, a specific 
phenotype of mesenchymal cells, is derived from 
fibroblasts in the connective tissue and 
epithelium at the edges of wound, bone marrow 
fibrocytes, and other nearby transdifferentiating 
cells circulating in the blood vessels [55,56]. 
Myofibroblasts play a significant role during 
wound closure by forming new matrix 
constituents which remodel the healing tissues 
[55]. Cellular senescence can deleteriously affect 
the differentiation of myofibroblasts, hence, it 
halts fibrosis during wound repair [57]. A massive 
suppression of differentiation of myofibroblasts 
has been detected in senescent cardiac tissue 
[58] and in old skin fibroblasts [59]. It is sensible 
to assume that protecting the cells form 
inflammatory senescence would be beneficial to 
sustain or promote the healing process at the 
periodontal wounds. 
 

4.2 Importance of Cell Migration in 
Periodontal Wound Healing 

 
Migration of epithelial cells and fibroblasts from 
the edges of the wound to fill the wound gap is 
crucial step for re-epithelialization [54,60-63]. 
Clot formation is the initial response to traumatic 
injury or surgical procedure. The forming clot 
protects the opened wound temporarily; and it 
acts as a scaffold matrix for the epithelial and 
fibroblasts migration [64]. The scaffold matrix is 
later replaced by a newly formed collagen matrix 
made by the migrating fibroblasts into the wound 
gap. Formation of specific ECM molecules by 
migrating fibroblasts in the wound gap is 
controlled by vascular endothelial growth factor 

(VEGF), transforming growth factors-β1 (TGF-
β1) and other proteins such as IL-1α, IL-1β, and 
IL-4 [54]. In order to shape and remodel the 
healing wound area, cells migrating into the 
wound area are also controlling the proteolysis 
into the leading edge of epithelium by proteolytic 
enzymes activated at specific sites of the cell 
membrane [53,65,66]. 
 

4.3 Cellular Senescence and Periodontal 
Wound Healing 

 
Differentiation, proliferation, and migration of 

mesenchymal or stem-like cells to the wound site 
are vital part of several events to achieve an 
optimal wound healing [67]. Senescence or 
accelerated cell cycle arrest elicits a damaging 
effect on the wound healing of oral tissues, 
including the periodontium and the masticatory 
mucosa [12,68]. Senescence detrimentally 
disrupts the three phases of tissue repair, 
including the transient inflammatory phase, new 
tissue matrix formation, and tissue remodelling 
phase. Steps of wound healing result in tissues 
restoration and prevention of infection and 
chronic inflammation. Therefore, senescent 
tissues are very susceptible for bacterial 
colonization and subsequently inflammatory 
reactions [11]. 
 
Cáceres et al. (2014) found that senescent 
gingival fibroblasts were not participating in 
tissue remodeling during wound healing as they 
had no ability to synthesize actin fibers when 
compared to the healthy fibroblasts [12]. These 
results suggest that senescence adversely 
affects normal collagen production and 
reorganization during wound healing, and halting 
proper tissue homeostasis and function [11,12]. 
 

It has been reported that expression of collagen 
1A1 gene is reduced in the senescent 
periodontal ligament as the gene promoter has 
undergone hypermethylation in the senescent 
cells [69]. TGF-β1 expression is crucially 
affecting the production of collagen [70]. 
Previous experiments have shown that massive 
loss of collagen in the aged skin is probably due 
to reduced TGF-β expression together with 
declined levels of connective tissue growth factor 
(CTGF) [71]. Though the mechanism of TGF-β 
expression may differ in oral tissues compared to 
skin [72], it is probable that gingival tissue cells 
would undergo changes due to the reduced level 
of TGF-β in the senescent cells. Other molecules 
involved in the modification and reorganisation of 
extracellular matrix components are matrix 
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metalloproteinases (MMPs) which regulate the 
formation of new tissue constituents in gingival 
wounds [73]. Senescent periodontal ligament 
cells were found to have high levels of MMPs 
and tissue inhibitors of MMPs (TIMPs) compared 
with young periodontal cells donors [74]. 
Increased levels of proteolytic enzymes would 
lead to disruption of tissue repair in senescent 
tissues as degradation process surpasses 
reconstruction of new tissue [75,76]. 

 
Previous investigation found that the levels of 
interleukin-1α (IL-1α) that stimulates 
plasminogen activator inhibitor-2 (PAI-2) were 
increased during inflammatory senescence of 
human dermal fibroblasts [77]. Other studies 
investigated senescent human periodontal 
ligament fibroblasts have revealed persistent 
formation of interleukin-6 (IL-6) and tumor 
necrosis factor–α (TNF-α) which subsequently 
caused a prolonged inflammation [78]. These 
results showed that chronic inflammatory phase 
in senescent tissues is a significant factor that 
delay periodontal wound healing [11]. 

 
One of the most important known tissue change 
resulted from cellular senescence is the 
reduction of cells capability to migrate [79-83]. 
The limited migration ability is attributed to the 
structural changes which occur to the cell 
cytoskeleton in senescent tissues [84,85]. The 
dynamic actin framework is an important part of 
the cytoskeleton as it regulates protrusion, 
adhesions, contraction, and retraction from the 
cell front to the rear during cell migration [85,86]. 
Previous studies have shown that vimentin 
production surpasses action formation in 
senescent fibroblasts [84,86,87]. As such, 
migration deficit is one of the critical properties of 
senescent cells and has negative impact during 
wound healing. Since senescent cells tend to 
secrete cytokines and mediators which provoke 
the inflammation and degrade the matrix, normal 
process of wound repair would be further 
impaired. Another reason for the reduced 
migration ability of senescent cells is the loss or 
deficiency of the migratory response to tissue 
forming factors such as growth factors [88,89]. 
 
5. CONCLUSION 
 
During periodontitis, cellular senescence affects 
the implicated periodontal tissues adversely, 
shortens the cell telomere and induces 
unrepairable DNA damage. It also affects 
fibroblasts migration, which detrimentally affects 

the healing of tooth supporting tissue. In severe 
untreated cases, the inevitable destruction may 
lead to the loss of affected teeth. 
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