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ABSTRACT 
 
Brassinosteroids (BRs) act as immune-modulators for generating plant growth and development. It 
regulated either activation or suppression of various key enzymatic reactions, activation of synthesis 
of protein, and generation of various defense modulating compounds for the plant kingdom. BRs 
play a vital role in regulating cellular differentiation, pollen development, fruit ripening, and quality 
seed formation.   BRs regulates the various physiological process including root growth during 
nutrient deficiency such as nitrogen, phosphorus, boron and tends to signal the nutrient distribution 
in the rhizosphere level for better growth and high yield in crop plants. This review highlighted the 
role of BRs in plant growth and development and stress response, understanding the BR pathway, 
the molecular mechanism of BR signaling in various tissues, crosstalk between BRs and other 
phytohormones, gene involves in the brassinosteroids signaling pathway, biosynthesis and  role 
of  BRs  in  biomass production and crop yield. 
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1. INTRODUCTION 
 
Growth of the plant and its metabolic activities 
are fully regulated by different plant growth 
hormones and biostimulants It is mostly 
regulated in a coordinated manner. Plant growth-
promoting substances are derived naturally 
which influences several physiological processes 
at a low concentration [1]. Plant growth and 
metabolism are solely responsible for the power 
and building blocks of a plant cell. Plant 
hormones regulated the growth of the tissues 
and metabolic action. At the beginning of the 
nineteenth century, it has been demonstrated 
that the development of plant growth is regulated 
by the hormone that moves from one part to 
another part of the plant. Plant growth is basically 
synchronized by plant hormones and 
synergistically affects various physiological, 
metabolic, and cellular processes. There are 
different phytohormones which include auxins, 
cytokinins, gibberellins (GAs), brassinosteroids 
(BRs), abscisic acid (ABA), and ethylene 
[2]. Brassinosteroids (BRs) are a plant-derived 
polyhydroxysteroids and recognized as a plant 
hormone [3]. BRs is an important group of plant 
steroid hormones, which regulate many 
processes in plant growth and development, cell 
elongation and proliferation, division of the cell, 
cell senescence, vascular differentiation, phases 
of reproduction, photo-morphogenesis, seed 
germination, initiation of the root, development of 
flowering, fruit ripening, tolerance response to 
various biotic and abiotic stresses [4–9]. In past 
decades, high thought research has been made 
in the application of brassinosteroids in plant 
growth and metabolism, interaction with other 
phytohormones and networking signaling 
pathways [10-13]. Brassinolide, a plant growth 
promoting steroid was first isolated by Grove et 
al. [14] from the pollen of Brassica napus  and 
showed growth-promoting activity named as 
‘brassinosteroids’ [15]. Hayat and Ahmad [16] 
reported that these steroidal compounds are 
considered as another group of phytohormones 
and essential for plant growth and developmental 
processes. Coll et al. [17] reported that the BRs 
are natural, non-genotoxic, safe, and eco-friendly 
phytohormone and used for plant growth, fruiting 
quality, and yield performance in agricultural and 
horticultural crops. Due to their various significant 
properties, BRs are considered as plant 
hormones having pleiotropic properties 
[18]. These BRs have an active role in a large 

number of physiological processes in plants as 
reported by Khripach et al [19]. Saini et al. [20] 
reported that BRs associated with 
phytohormones including polyamines for 
regulating different physiological and 
developmental activities in plants. There are 
more than 70 BRs have been isolated from 
different plant species including 37 angiosperms, 
5 gymnosperms, a pteridophyte (Equisetum 
arvense), and an alga (Hydrodictyon 
reticulatum). Among all, only three i.e., 
brassinolide (BL), 24-epibrassinolide (EBL) and 
28-homobrassinolide (HBL) are the most 
important derived from different plant parts (Fig. 
1) and actively used in the physiological process. 
The BR-concentrations were more in pollen and 
immature seeds as reported by Bajguz and 
Tretyn [21]. BRs have a common 5α-cholestane 
skeleton and classified as C-27, C-28, or C-29 
compounds on the basis of alkyl-substitutions in 
the side chain, Oxygen at C-6 and hydroxyl 
group on the side chain at C-22 and C-23 
positions are essential for the activity of BRs. 
However, BL is the most active, low abundance 
plant steroids and an oxygen moiety at C-3 and 
additional ones at the C-2, C-6, C-22, and C-23 
carbon atoms [22,23,16]. The present review 
highlighted the present scenario on role 
of brassinosteroids on plant growth and 
metabolism, understanding the BR pathway, 
molecular mechanism of BR signaling, crosstalk 
between BRs and other phytohormones and it's 
regulation. 
 

2.  REGULATORY MECHANISMS OF BRs 
IN PLANTS 

 
In last two decades, the BR signal transduction 
pathway has been extensively studied and 
reported as a complex pathway. The 
transduction pathway has a critical role in plant 
growth and development. The signal transduction 
pathway shows that BR is perceived by 
BRASSINOSTERIOD INSENSITIVE 1 (BRI1) 
receptor kinase at the cell surface and activates 
BRASSINAZOLE RESISTANT 1 (BZR1) and 
BRI1-EMS SUPPRESSOR 1 (BES1) 
transcription factors to induce stress tolerance. 
Exogenous application of BR binds to 
transcription factor (BRI1) inducing an 
association with BRI1-ASSOCIATED 
RECEPTOR KINASE 1 (BAK1) and 
disassociation of BRI1 KINASE INHIBITOR 1 
(BKI1). Sequential transphosphorylation between 



BRI1 and BAK1 is necessary to activate BRI1 
and furthermore to phosphorylate BR
SIGNALING KINASE 1 (BSK1) and enhance 
BRI1 SUPPRESSOR 1 (BSU1) activity. The 
activated BSU1 inhibits BRASSINOSTEROID 
INSENSITIVE 2 (BIN2) through 
dephosphorylation of the phospho
residue of BIN2, which allows accumulation of 
unphosphorylated BZR1 and BZR2/BES1 
transcription factors. The dephosphorylated 
BZR1 and BES1 enter to the nucleus and 
 

 
Fig. 1. Chemical structure of 

homobrassinolide (HBL) 
 

 
Fig. 2. Regulatory mechanisms of b
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BRI1 and BAK1 is necessary to activate BRI1 
and furthermore to phosphorylate BR-
SIGNALING KINASE 1 (BSK1) and enhance 
BRI1 SUPPRESSOR 1 (BSU1) activity. The 
activated BSU1 inhibits BRASSINOSTEROID 
INSENSITIVE 2 (BIN2) through 
dephosphorylation of the phospho-tyrosine 
residue of BIN2, which allows accumulation of 

and BZR2/BES1 
transcription factors. The dephosphorylated 
BZR1 and BES1 enter to the nucleus and 

subsequently regulating BR-targeted genes for 
enhancing the activity of antioxidant enzymes, 
regulating the accumulation of endogenous 
hormones and upregulating many genes for plant 
stress tolerance [24–28]. 
 
It has been reported that both abiotic and biotic 
stresses have been recorded as the main 
potential threats to the normal plant growth and 
agricultural productivity. The stresses such a
UV radiation, alkalinity, salinity, water lodging,

1. Chemical structure of brassinolide (BL), 24-epibrassinolide (EBL)) and 28
homobrassinolide (HBL) (Bajguz & Tretyn [21] 

2. Regulatory mechanisms of brassinosteroids in plants 
the synthesis of phytohormones for regulating growth. But, at a certain levels, phytohormones 

regulate negative manner. BRs can either show antagonistic or synergistic interactions with other endogenous 
phytohormones for elicitation of stress response. (Ahanger et al. [39]) 
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temperature, and heavy metals alter plant growth 
and metabolism. Plant growth hormones play a 
vital role in the regulation of plant growth and are 
actively involved in counteracting the stresses 
through signaling cascades for better response. 
There are many published literature that BRs 
actively participate in chlorophyll synthesis, 
antioxidant activity, accumulation of osmolyte, 
nitrogen metabolism, nutrient management and 
plant–water relationship between normal plant 
growth as well as stressful conditions [29–35]. 
BRs have also regulated the growth and 
imparting the regulation of genes under stress 
and other defense mechanism for adaptability 
and a significant role in modulating oxidative 
damage of reactive oxygen species (ROS), 
amelioration of components of the antioxidant 
defense system, osmoprotectant regulation, 
detrimental effects on pigments and 
photosynthesis, production of secondary 
compound and biosynthesis of other plant growth 
regulators as well as the expression of genes 
involved in defense responses [36-39] (Fig. 2). It 
has also been noted that BRs impart growth 
stimulation and stress mitigation in a 
concentration-dependent manner. Exogenously 
application of BRs either through feeding along 
with nutrients, spraying or priming helps the 
stress tolerance mechanisms [40–44]. 
 

2.1 Role of BRs in Drought Stress 
 
Many researchers reported that the crop growth 
reduction due to a decrease in photosynthetic 
rate, changes in nitrogen and antioxidant 
metabolism, accumulation of secondary product, 
and alteration of mineral nutrients [6,45,46]. 
However, the drought effect in plants has been 
reduced on the application of growth regulators 
including BRs. Upreti and Murti [47] reported that 
the application of either EBL or HBL to water-
stressed plants enhances the plant growth 
including root nodulation and nitrogenase 
activity. Further, Fariduddin et al. [40] noted that 
the application of 0.01 μM HBL to drought-
stressed plants of Brassica juncea at two 
different developmental stages enhanced the 
stomatal conductance, photosynthetic rate, and 
increasing the accumulation of proline. It has 
been widely reported that exogenous BR 
application up-regulates the activity of antioxidant 
enzymes and the levels of non-enzymatic 
antioxidants for mediating efficient removal of 
reactive oxygen species (ROS) and protect the 
membrane lipids for maintaining membrane 
integrity [30,48–50]. Behnamnia [51] noted that 
the application of EBL reduced oxidative damage 

in tomato plants during drought stress by down-
regulating lipoxygenase activity and upregulating 
the antioxidant defense system by enhancing the 
expression of antioxidant isozymes. Therefore, 
BRs plays a vital role in expressing genes 
involved in the mechanism of drought tolerance 
in various crops. Sahni et al., [52] reported that 
the over-expressing the BR biosynthetic gene, 
DWF4 in transgenic Brassica napus for 
enhancing the drought stress tolerance. It has 
also been reported that application of EBL 
develops the drought tolerance by up-regulating 
the transcription factors regulating the expression 
of the drought-responsive element, DRE, in 
Arabidopsis thaliana and Brassica napus [53].  
 

2.2 Role of BRs against Salinity Stress 
 
Salinity stress imparting both the osmotic and 
ionic imbalances in plants which reduces the 
growth and productivity [12,31,46,54]. Salinity 
disturbed the different activities of the plant 
growth and metabolism which includes ionic 
toxicity, elevated production of ROS leading to 
oxidative damage, osmotic stress, disturb the 
photosynthetic organelles, reduced nitrogen 
metabolism, and reduced the uptake and 
translocation of mineral nutrients. The application 
of BRs in plants regulating salinity tolerance 
mechanisms has been reported in several crops 
including rice [55], Brassica species [10, 
11,12,29], Vigna sinensis [56], and Mentha 
piperita [57]. Shahbaz and Ashraf [58] reported 
that the foliar application of EBL has the adverse 
effects of salinity in wheat by increasing the 
oxidative activity of peroxidase and catalase with 
regard to salinity tolerance. Song et al. [59] noted 
that the inclusion of EBL in salt-stressed peanut, 
caused the enhancement in growth by up-
regulating the oxidative enzyme activity 
concomitant with reduced electrolyte leakage 
and malondialdehyde content. BRs are also 
known to regulate a number of genes involved in 
key metabolic processes in plants exposed to 
saline stress. Divi et al. [60,61] suggested that 
BRs share transcriptional targets with other plant 
hormones. In Arabidopsis thaliana, the 
application of EBL enhanced the expression of 
phytohormone marker genes and it rescued the 
ethylene-insensitive ein2 mutant and the ABA-
deficient aba-1 mutants from salt stress.  
 

2.3 Role of BRs against Temperature 
Stress 

 
According to the Intergovernmental Panel on 
Climate Change [62] report, the mean land 
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surface air temperature has increased by 1.53°C 
while global mean surface (land and ocean) 
temperature (GMT) increased by 0.87°C. Both 
high and low temperatures can adversely effect 
on plant growth. Both high and low temperatures 
are potential environmental factors affecting 
physiological processes, biochemical and 
molecular changes [10,11,63–66]. The 
application of BRs showed positive impact on 
plants particularly different agricultural crops with 
enhancing the efficiency of key metabolic 
pathways. There are several reports on 
exogenous application of BRs in different crops 
which mitigate the adverse effects of either high 
temperature [42,52,67–70] or low temperature 
[66,71-73] regimes regulating the metabolic 
action. It has been reported that the BRs have an 
ameliorative effect in low-temperature stress in 
different crop plants for up taking and 
translocation of both water and nutrients. Xi et al. 
[74] noted that the application of BR in 
grapevines reduces the cold-induced ion leakage 
by stabilizing membrane integrity through 
improvement in antioxidant and osmoregulatory 
components. The foliar spray of HBL mediated 
growth enhancement of Cucumis sativus under 
chilling stress by improving the activities of 
antioxidant enzymes and providing protection to 
the photosynthetic system from the ROS-induced 
oxidative damage [32]. Jiang et al. [75] reported 
that the exogenous application of BR activated 
photosynthetic and antioxidant enzymes leading 
to improved photosynthesis through the 
alleviation of chilling induced pho-oxidative 
damage. Heat shock proteins have been 
extensively studied in plants and their potential 
role in high-temperature tolerance. It is an 
evident fact that BRs can also promote the 
expression of heat shock proteins (hsp100, 
hsp90, hsp 70) in Brassica species and tomato 
under thermal stress [76].  Lee et al [77] reported 
that the application of BRs affects physiological 
responses and improves heat stress tolerance in 
Kimchi cabbage. They observed that after 3 days 
of heat stress, catalase and peroxidase enzyme 
activities was increased by 1.76- to 2.08-fold as 
compared to the control.  It indicates that the 
foliar application of biostimulants reduced 
physiological damage and enhanced the 
antioxidant enzymes, thereby improving heat 
stress tolerance. 
 

2.4 Role of BRs against in Nutrient Stress 
 
The plant's vegetative and reproductive process 
is severely affected by the deficiency of mineral 
nutrients. Phytohormones are not able to replace 

the nutrients for regulating the physiological and 
biochemical process of plant metabolism. But, 
they can compensate for the need for nutrients to 
some extent. However, phytohormones including 
BRs are able to compensate some extent the 
uptake of mineral nutrients. Janeczko et al. [78] 
reported that the foliar application of EBL caused 
a significant enhancement in nutrient uptake in 
Triticum aestivum under salt stress. The nutrients 
like potassium and calcium are able to maximize 
uptake and stabilizing the K/Na ratio.  They also 
noted that the exogenous application of EBL 
(0.01 M) either foliar or soaking increased uptake 
of potassium, magnesium, and calcium, and 
reduced-sodium and iron in wheat.  Yuan et al. 
[79,80] reported that EBL-treated plants 
maintained a higher K+/ Na+ ratio and improved 
the activity of Ca2+-ATPase and prevent toxicity 
of excess Ca

2+
 from the cells. Song et al. [59] 

achieved to reduce the production of ROS 
including superoxide and H2O2 due to the 
application of EBL to Arachis hypogea. They also 
noted that EBL application mitigates the Fe-
deficiency-induced oxidative stress by up-
regulating the activity of nitrate reductase, 
antioxidant activity, and the accumulation of 
osmolytes. Furio et al. [81] reported that BRs is 
able to induce calcium signaling pathway and 
overexpressed calmodulin-like (CML) proteins 
and CMLs genes e.g. FaCML1a, FaCML36, 
FaCML42and FaCML45 and other defense-
related genes (PR1, ERF1, and GLS5).  Zhao et 
al. [37] demonstrated that the treatment of BR 
reduced ammonium toxicity by down-regulating 
the expression of ammonium transporter-
1 (AMT1) gene expression in roots 
of Arabidopsis. The expression of AMT1 
transporters (AMT1;1, AMT1;2, AMT1;3) is 
directly regulated by BR signaling transcription 
factor, BES1, and NH4 +-mediated repression of 
AMT1 transporters were observed to suppress in 
a gain-of-function in ammonium-sensitive BES1 
mutant (bes1-D). They concluded that BR-
induced regulation of nitrogen uptake and 
assimilation occurs via the BR signaling pathway. 
Yan et al [82] reported that 
phytohormone brassinosteroids (BRs) have a 
significant role in pollen viability, pollen 
germination, and seed development in tomato 
plants. They observed that overexpressing the 
BR biosynthetic gene DWARF (DWF) or BR 
signaling regulator BRASSINAZOLE 
RESISTANT 1 (BZR1) and exhibited the 
opposite effects. Loss or gain of function in 
the DWF or BZR1 genes altered the timing of 
reactive oxygen species (ROS) production and 
programmed cell death (PCD) in tapetal cells and 



 
 
 
 

Praveena et al.; CJAST, 39(25): 174-196, 2020; Article no.CJAST.59978 
 
 

 
179 

 

resulting in delayed tapetal degeneration. BZR1 
could directly bind to the promoter of 
RESPIRATORY BURST OXIDASE HOMOLOG 
1 (RBOH1), and that RBOH1‐mediated ROS 
promote pollen and seed development by 
triggering PCD, tapetal cell degradation in 
Solanum lycopersicum. 
 

2.5 Role of BRs against Heavy Metals 
 
Brassinosteroids have the ability to regulate the 
uptake of ions into plant cells and also used to 
reduce the accumulation of heavy metals in 
plants. Sharma et al. [83] reported that the 
application of 28-HBL in the plant which regulate 
the ameliorative properties to detoxify the zinc 
toxicity in Brassica juncea. Bajguz and Hayat 
[38] noted that BRs has the ability to minimize 
the toxic effects by an excess of heavy metals. 
Sharma et al. [83] reported that BR's application 
helps to regulate the antioxidant enzymes and 
mitigating the toxic effect of zinc in Brassica 
juncea. Hayat et al. [41] reported that the 
application of HBL signifies the positive effect on 
Cd stress in Brassica juncea. They observed that 
the plants under Cd stress exhibited a decline in 
growth, chlorophyll content, the activity of nitrate 
reductase, the activity of carbonic anhydrase, 
nitrate, and sugar content. But, it has been 
overcome the toxic effect by the application of 
HBL. It enhanced proline accumulation and 
oxidative enzyme activities and reduced the 
peroxidase and ascorbic acid oxidase activities. 
Anuradha and Rao [39] further reported that the 
application of BRs helps the reduction of lipid 
peroxidation induced by Cd. The aluminum 
toxicity is the major growth-limiting factor for crop 
cultivation on acidic soils. Ali et al. [29] studied 
the application of either EBL or HBL through 
spraying resulted in the reduction of aluminum 
stress in Vigna radiata. The activities of 
superoxide dismutase, peroxidase, catalase, and 
proline content increased in response to the Al 
stress and maximum in the HBL or EBL treated 
plants. The increase in the aluminum resistance 
conferred by BRs was reflected in the 
improvement of plant growth, photosynthesis 
efficiency, etc in the presence of aluminum 29]. 
Nickel is an essential element, its high 
concentration is toxic to plant system and inhibits 
photosynthesis, respiration, enzyme activities, 
and protein content. Kaya et al. [84] reported 
that 0.5 μM 24-epibrassinolide (EBR) sprayed 
every other day for 10 days to pepper plants 
enhanced the defense mechanism against Cd 
stress. EBR reduced leaf Cd²⁺ content and 
oxidative stress, enhanced plant growth, 

regulated water relations, and led to further 
increases in proline content, AsA-GSH cycle-
related enzymes’ activities, antioxidant defense 
system-related enzymes as well as NR activity 
and endogenous nitric oxide content. They also 
noted that nitrate reductase (NR) participated in 
brassinosteroid (BR)-induced cadmium (Cd) 
stress tolerance primarily by accelerating the 
ascorbate-glutathione (AsA-GSH) cycle. The 
EBR and the inhibitor of NR reversed the positive 
effects of EBR by reducing NO content. It is 
evident that nitrate reductase could be a potential 
contributor of EBR-induced generation of NO 
which plays an effective role in tolerance to Cd in 
pepper plants by accelerating the AsA-GSH 
cycle and antioxidant enzymes. 
 

3. BRs AND BIOTIC STRESS 
 
In the natural environment, plants are facing 
different kinds of biotic stresses including 
bacteria, viruses, and harmful insects and pests. 
The agricultural production is hampering due to 
the biotic stresses.   Plants have their own 
immune system, which provides resistance to 
external stressors. Plants make use of pre-
existing physical and chemical barriers, as well 
as inducible defense mechanisms, which 
become activated upon attack by microbes and 
pathogens. The plant defense mechanism 
reduces the harmful effects of biotic stresses. 
During stress atmosphere, the plant induced 
defense system is regulated by complex 
interconnected signal transduction pathways in 
which plant hormones  such as abscisic acid 
(ABA), jasmonic acid (JA), salicylic acid (SA) and 
BRs play a vital role [26,85]. Bajguz and Hayat 
[23] reported that the application of BR at low 
concentrations in horticultural crops helps to 
improve the growth and yield and increases 
resistance to pathogens. However, the levels of 
protection and effectiveness depend upon the 
method of application of BR. Lu et al. [38] 
reported that secondary compounds like 
flavonoid, anthocyanin, and catechin, induced 
MYB genes which were increased in rust infected 
tissues of apple. The MYB30 genes directly 
regulated BES1 in Arabidopsis. BES1 is a key 
gene of the BR signal transduction pathway, and 
AtMYB30 mutants and BES1 interact with each 
other and promote BR targeted genes as 
reported by Kim and Wang [86]. Lu et al. [38] 
reported that the application of BR along with 
other plants hormones like ABA, JA, and SA help 
in reducing rust disease in apple plants. They 
noted that BR functions via synergistic crosstalk 
with SA, JA, and ethanol (ETH) signaling 
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pathways to respond to chilling stress and play 
an essential role in biotic stress tolerance by 
activating enzymes, resistance genes, 
antioxidants, hormones, transcriptional factors, 
and signaling pathways to reduce biotic stress 
damage. Brassinosteroids perform various 
functions due to its interplay with other 
phytohormones like auxins, cytokinins, ethylene, 
ABA, GA, SA & JA and to regulate myriad 
aspects of plant growth and developmental 
processes [87,88].  
 

4. INTERACTION OF BRASSINOSTER-
OIDS (BRS) WITH OTHER 
PHYTOHORMONES 

 
Crosstalk between BR and auxin regulates the 
plant growth and developmental process [89-92]. 
Interaction of BRs and auxin are involved in 
hypocotyl or root development and also 
regulating stress responses [93]. Mouchel et al. 
[94] reported that both the CPD gene and DWF4 
gene required for BR biosynthesis and in auxin 
signaling. There is a network connection 
between BR and auxin for plant growth and 
improvement via. BIN2 and auxin reaction factors 
(ARF2). Vert et al. [95] reported that the BR 
signaling part BIN2 can specifically collaborate 
with an auxin signaling segment ARF2, an 
individual from the auxin response factor group 
of transcriptional controllers [96].  
 
BR is also found to interact with gibberellic acid 
(GA) to coordinate different physiological 
processes [48,97]. Several reports indicate that 
BR-GA antagonistic interaction help in defense 
processes against Pythium graminicola. They 
demonstrated that in several GA-deficient and/or 
–insensitive mutants, the disease occurance 
were more severe. It implies a positive role of GA 
in providing resistance against P. graminicola. 
Further, it has been noted that susceptibility 
similar to those observed in BR treated plants 
was detected when endogenous GA level was 
disrupted using uniconazole, GA biosynthesis 
inhibitor [98]. The abundance of GA repressors, 
DELLA and SLR1 is positively regulated by BR. 
They reported that this phenomenon leads to BR 
mediated suppression of the GA biosynthetic 
genes such as GA20ox and GA3ox3 induce 
GA2ox expression which is involved in 
suppression of GA signaling and its deactivation. 
Tong et al. [99] reported that the crosstalk 
between BR and GA has been established in 
regulating plant cell elongation in rice. They 
suggested that BR promotes GA accumulation 
by inducing the expression of D18/GA3ox-2, one 

of the GA biosynthetic genes. However, 
exogenous application of high concentration of 
BR leads to the activation of GA2ox-3, a GA 
inactivation gene, resulting in inhibition of cell 
elongation. Moreover, GA inhibits BR signaling 
as well as its biosynthesis in a feedback 
inhibiting loop but facilitate cell elongation 
through activating primary BR signaling pathway 
upon applying exogenous high GA concentration, 
indicating brasinosteroid (BR) - gibberellic (GA) 
crosstalk in regulating cell elongation [99]. Hu et 
al. [100] reported the interaction between BR, 
IAA, and GA on cotton fiber development has 
been studied in Gossypium hirsutum. A class of 
DELLA proteins GhGAII was down-regulated by 
BR and auxin treatment during cotton fiber 
initiation and elongation, suggesting its 
importance in cotton fiber improvement through 
genetic modulation of phytohormone strategy. 
Hui et al. [101] reported that the levels of 
gibberellic acids have positively correlated with 
BRs at three developmental stages with the 
expression levels of CsCPD (Cytochrome P450 
90A1) and CsDWF4 (Dwarf4), which are involved 
in BRs biosynthesis pathway. The expression 
of CsGA20ox1 (Gibberellin 20 oxidase 1), a gene 
involved in the GAs biosynthesis pathway. They 
suggested that CsGA20ox1, CsCPD, and 
CsDWF4 might play regulative roles in the 
crosstalk between GAs and BRs at the 
developmental stages of tea leaves. Further, Li 
et al. [102] reported the crosstalk between 
gibberellin (GA) and brassinosteroid (BR)in co-
regulating rice seed germination. On the basis of 
the isobaric tags for relative and absolute 
quantitation (iTRAQ) proteomic approach, they 
identified 42 differentially abundant proteins in 
both BR-deficient and BR-insensitive rice plants, 
and most were altered consistently in the two 
groups. Gene Ontology analysis revealed the 
enrichment in proteins with binding and catalytic 
activity. A potential protein-protein interaction 
network was constructed using STRING 
analysis, and five Late Embryogenesis Abundant 
(LEA) family members were markedly down-
regulated at both mRNA transcript and protein 
levels. These LEA genes were specifically 
expressed in rice seeds, especially during the 
latter stages of seed development. Mutation of 
LEA33 affected rice grain size and seed 
germination, possibly by reducing BR 
accumulation and enhancing GA biosynthesis 
[102].  

 
Cytokinin-brassinosteroid indirectly crosstalks 
through modulation of auxin transport in 
regulating lateral root development. BR 
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enhances the expression of auxin efflux carriers 
i.e. PIN genes which probably aids to maintain 
local auxin maxima required for root primordium 
development [103]. Cytokinin inhibits the lateral 
root development and disturbs auxin 
accumulation by down-regulating the expression 
of PIN genes, indicating an indirect interaction 
between BR and cytokinin (CK) [104]. Cytokinin 
stimulates the accumulation of endogenous BR 
suggesting the synergistic interaction between 
brassinosteroid and cytokinin in Chlorella 
vulgaris [105]. Upon exogenous treatment of 10 
µM trans-zeatin (tZ) to the C. vulgaris culture, 
there was considerable increase in the level of all 
endogenous BR by 27–46%. The co-application 
of both BL and trans-Zeatin (tZ) lead to highest 
stimulation in the number of C. vulgaris cells and 
endogenous accumulation of proteins, 
chlorophylls and monosaccharides, whereas, the 
lowest was observed upon treatments with 28-
homocastasterone (28-homoCS) and 1,3-
diphenylurea (DPU) indicating brassinosteroids 
and cytokinin crosstalk [105]. 
 
Brassinosteroid and ethylene crosstalk regulate 
the plant growth and developmental processes. 
BR has been identified as a negative regulator of 
shoot gravitropism, whereas ethylene has been 
shown to promote gravitropic reorientation in 
light-grown seedlings [106]. They suggested that 
BR and ethylene interact indirectly in regulating 
shoot gravitropic responses through involving 
auxin signaling genes [107]. BR 
activates AUX/IAA (a negative regulator of auxin 
signaling) and inactivates ARF7 and 
ARF19 (positive regulator of auxin signaling), 
thus inhibiting shoot gravitropic responses. 
Ethylene is a key regulator of hyponastic growth, 
which is employed by plants to cope with biotic 
and abiotic stresses. ROT3/CYP90C1 encodes 
an enzyme that mediates C-23 hydroxylation of 
BR. A mutation in ROT3 reduces hyponastic 
growth leading to impairment of local cell 
expansion and inhibition of BR biosynthesis, 
indicating that hyponastic growth induced by 
ethylene is mainly regulated by BR [108]. 
Vandenbussche et al. [106] reported that 
ethylene down-regulate AUX/IAA and enhances 
ARF7 and ARF19 genes to positively regulate 
shoot gravitropic responses. So, ethylene and 
BR have been found to have opposite effects on 
the upward growth of etiolated shoots. Ethylene-
BR antagonism has also been observed in the 
case of roots. Ethylene reduces root gravitropic 
responses, while BR enhances root gravitropic 
bending probably by modulating auxin transport 
[106,109-111]. In BR-insensitive mutants, bri1-

301 and bak1, delayed root growth and reduced 
response to the gravitropic stimulus [110]. 
However, in ethylene insensitive mutants, ein2-5 
and etr1-3 reduced inhibition toward root 
gravitropic responses was reported, indicating 
antagonistic interaction between BR and 
ethylene in regulating gravitropic responses in 
plants [109]. The exogenous application of BR 
enhanced ethylene biosynthesis in Arabidopsis 
seedlings [112]. Muday et al., [113] reported 
that BR help to up-regulates the expression of 1-
aminocyclopropane-1-carboxylate synthase 
(ACS), the key gene required for ethylene 
production. Further, BR acts post-
transcriptionally and also increases the stability 
of ACS proteins such as ACS5, ACS6 and ASC9 
by preventing its ubiquitination mediated by 26S 
proteosome. Thus, in response to various 
endogenous and exogenous signals, ACS is 
regulated by BR to continuously adjust ethylene 
biosynthesis in various tissues [112]. The 
synergistic interaction between ethylene and BR 
in regulating hyponastic growth has also been 
demonstrated [108].  

 
BR promotes seed germination indicating the 
antagonistic interaction with abscisic acid 
[114,115,116]. Genetic, physiological and 
biochemical studies have revealed that BR and 
ABA can co-regulate the expression of genes 
[117,118].  They reported  that in BR biosynthetic 
and signaling mutants such as det2-1 and bri1, 
does not rely upon BR perception, but depends 
on BIN2, a negative regulator of BR signaling 
[118]. Abscisic acid (ABA) on BR signaling 
largely depends upon ABI2 and slightly on ABI1, 
a PP2C family serine/threonine phosphatase.  It 
is also noted that ABA and BR crosstalks through 
BR signaling components (BIN2) and, ABA 
signaling components (ABI1 and ABI2). 
Furthermore, BR and ABA have been suggested 
to play antagonistic roles in regulating seed 
germination and post-germinative growth 
processes [119]. ABA inhibits while BR-
enhances seed germination and post-
germinative growth processes. Another factor 
undertakes that BIN2, positively regulates ABA 
responses by physically interacting with ABI5.  
So, BIN2 stabilizes ABI5, by phosphorylating it, 
thus mediating ABA responses during seed 
germination. However, BR application inhibits the 
regulation of ABI5 by BIN2 to antagonize ABA 
mediated inhibition reported by Hu and Yu [119]. 
Zhou et al., [120] observed that there is a 
synergistic correlation between BR and ABA in 
inducing various responses such as H2O2 
production, respiratory burst oxidase homolog1 
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(RBOH1) gene expression, NADPH oxidase 
activity and in mediating heat and oxidative 
stress tolerance. They suggested that ABA 
biosynthesis plays a key role in sustaining    
stress tolerance in BR-induced pathways in 
plants. 
 
Brassinosteroid (BR) – Polyamine (PA) crosstalk 
is involved in enhancing the stress tolerance 
mechanism in plants. Takahashi and Kakehi 
[121]  noted that the application of BR maintains 
the optimum amount of spermidine concentration 
required for normal plant growth and specifically 
increases the production of putrescine  
necessary for stress tolerance but decreases the 
concentration of cadaverine which generates 
oxidative burst to counteract heavy metal stress. 
The co-application of Cu and BR also decreases 
cadaverine content enhancing superoxide 
dismutase (SOD) activity necessary for stress 
tolerance [122]. It has key role of BR-PA 
interaction in providing abiotic stress tolerance 
[123].  
 
The crosstalk between brassinosteroid (BR) and 
salicylic Acid (SA) is mediated via non-expressor 
of pathogenesis-related genes 1 (NPR1) and 
WRKY70, encoding a transcription factor working 
downstream of NPR1 [60,61]. It has been 
reported that SA mediated gene NPR1, is an 
essential module of 24-epibrassinolidemediated 
increase in temperature and salinity tolerance in 
Arabidopsis thaliana. Nakashita et al. [124] 
reported that an application of brassinosteroid 
tends to increase the resistance to the tobacco 
mosaic virus, the bacterial pathogen 
Pseudomonas syringae pv. tabaci, and the 
fungal pathogen Oidium sp. But, in case of rice, 
the BR enhances resistance to the fungal 
pathogen Magnaporthe grisea and the bacterial 
pathogen Xanthomonas oryzae. They have 
further studied that in case of tobacco, the 
enhancement in the BR mediated resistance 
does not necessary SA. It indicates that BR and 
SA act independently in providing resistance 
against pathogens [124].  

 
There is a synergistic connection of 
brassinosteroids (BRs) and jasmonic acid (JA) 
and has key roles in the plant growth. Kitanaga 
et al. [125] reported that BR improves JA level in 
rice under stress condition, which increases the 
thionin qualities encoding antimicrobial peptides 
having a potential crosstalk between BRs and 
JA. Peng et al. [126] noted that brassinazole 
application help in accumulation of anthocyanins 
in Arabidopsis which mediated JA pathway. The 

transcript levels of JA biosynthesis and JA-
initiated signaling gene were down-controlled 
during the application of low concentration of BR. 
At higher concentration, the transcript levels of 
JA biosynthesis and signaling gene were up-
regulated. Nahar et al. [127] further reported that 
two BR biosynthesis and signaling gene, 
OsDWF4 and OsBRI1 showing counter 
communication among BR and JA in the rice 
roots. Additionally, BR biosynthesis controlled by 
improved JA-antecedent, 12-oxo-phytodienoic 
destructive, and subsequently joining BR and JA 
pathway initiation. 
 

5. ROLE OF BRASSINOSTEROIDS IN 
PLANT PHYSIOLOGY AND 
BIOCHEMISTRY 

 
Brassinosteroids (BRs) at very low concentration 
(mM or µM) play important roles in regulating 
plant growth [128]. It affects the coordination of 
morphogenic events throughout plant ontogeny, 
seed germination and seedling elongation to 
maturity and seed development. Cell elongation, 
division and differentiation, enhancement of crop 
yield, reproductive biology (flowering), 
senescence, induction of ethylene biosynthesis, 
root growth and development, pollen tube 
growth, activation of proton pump, activation of 
photosynthesis and antioxidant system have 
been affected by brassinosteroids [129,130,131]. 
Wang et al. [132] demonstrated that BRs have 
able to stimulatehypocotyl elongation by 
increasing cell wall relaxation without a 
concomitant change in wall mechanical 
properties in Brassica chinensis. In addition, 
physiological measurements revealedthat BRs 
could stimulate cell wall loosening in epicotyls of 
soybean and hypocotyls of Brassica chinensis 
and Cucurbita maxima [128,133,134]. Low 
concentration of BRs induces the 10-fold 
increase in cell numbers, cell division and xylem 
differentiation [135,136]. Some researchers 
reported that BRs also promote cell elongation 
by regulating the transport of water via 
aquaporins as well as regulating the activity of a 
vacuolar H+-ATPase subunit [137,138]. BRs play 
a key role in Arabidopsis cell division in mutant 
det2 (de-etiolated2) suspension cultures and also 
caused an increase in transcript levels of the 
gene encoding cyclin-D3, a regulatory protein of 
the cell cycle [139]. Bajguz and Czerpak [140] 
reported that BRs-induced cell expansion and 
hyperpolarization of cell membrane and also 
stimulates the growth of cell cycle. BRs are 
involved in the process of cell enlargement 
through their effects on gene expression and 



 
 
 
 

Praveena et al.; CJAST, 39(25): 174-196, 2020; Article no.CJAST.59978 
 
 

 
183 

 

enzyme activity [141]. BRs stimulate the cell 
division by increasing the transcript levels of 
genes encoding cyclin D3, a regulatory protein of 
the cell cycle [139,142]. The role of cyclins and 
CDK genes has also been investigated in early 
fruit development of tomato [143]. Yamamoto et 
al. [144] suggested that BRs are synthesized 
immediately prior to secondary cell wall 
development and cell death. In maize (Zea mays 
L.) roots, Li et al. [145] observed that BRs 
actively take part in the control of the gravitropic 
response of Arabidopsis roots. They also noted 
that externally application of BRs increased the 
activity of ROP2, a GTPase, and an improved 
gravitropic response. Kim et al. [111] suggested 
that BRs interacted with auxin differently in the 
root elongation as in gravitropic responses. They 
demonstrated that BRs promoted an increased 
gravitropic response in Arabidopsis roots at low 
concentration of IAA and had reduced activity at 
high levels of IAA. Li et al [146] highlighted the 
role of brassinosteroid (BR) and redox signal 
hydrogen peroxide in breakdown of starch which 
is the major storage carbohydrate in plants. They 
reported that the brassinosteroid and redox 
signal hydrogen peroxide (H2O2) induce the 
breakdown of starch in guard cells, which 
promotes stomatal opening. BRASSINAZOLE-
RESISTANT1 (BZR1) interacts with the basic 
leucine zipper transcription factor G-BOX 
BINDING FACTOR2 (GBF2) to promote the 
expression of β-AMYLASE1 (BAM1), which is 
responsible for starch degradation in guard cells. 
H2O2 induces BZR1 oxidation, enhancing the 
interaction between BZR1 and GBF2 to increase 
BAM1 transcription. Mutations in BAM1 lead to 
starch accumulation and reduce the effects of BR 
and H2O2 on stomatal opening.  
 
Liu et al. [147] reported that brassinosteroids 
help to increases the essential inorganic ions, 
decreased toxic ions, and promoted ion 
homeostasis especially in leaves, root, and 
epicotyls of canola under abiotic stress. At low 
temperature and low light stress, 24-
epibrassinolide enhanced the metabolic activity 
of nitrate reductase, nitrite reductase, glutamine 
synthetase, glutamate syntheses and glutamate 
dehydrogenase enzymes [59,148]. Furthermore, 
exogenous brassinosteroids application 
increased H+- ATPase and Ca

2+-
 ATPase 

activities in root and leaf, which are responsible 
for establishing an electrochemical potential 
gradient to maintain ion balance in plants to 
alleviate stress effect [115]. Brassinosteroids 
have the potential to maintain ion homeostasis  
either directly or indirectly in plants [149-151]. It 

is observed that Brassinosteroids have positive 
effect on the activity of high affinity K

+
 

transporters and are associated with the 
reduction in Na+ and enhancement in K

+
 

concentration to improve the K+/Na+ ratio. 
Brassinosteroids have also been found to 
improve the Ca

2+
/Na

+
 and K

+
/Na

+
 ratios of the 

wheat cultivars by enhancing Ca2+ and K+ 
uptake, and thus enhance salt tolerance [152]. 
 
Brassinosteroid (BR) increases ethylene 
biosynthesis at the step between s-adenosyl 
methionine (AdoMet) and 1-aminocyclopropane-
1-carboxylic acid (ACC) by stimulating ACC 
synthase activity [153,154]. BR-induced ethylene 
can be inhibited by aminooxyacetic acid (AOA), 
fusicoccin (a fungal toxin) and the transport 
inhibitors 2,3,4-tri-iodobenzoic acid and 2-(p-
chlorophenoxy)-2- methylpropionic acid. 
Schlagnhaufer and Arteca [155] reported that the 
promotion of ethylene production in plant parts 
as well as in a whole plant system due to role of  
brassinosteroid. Exogenous application of BR 
significantly increased chlorophyll content and 
enhanced photosynthetic characteristics of plants 
under stresses. Chlorophyll is an important 
parameter used as an indicator of chloroplast 
development and photosynthetic activity [148]. 
BR is also regulating the combination of 
chlorophyll molecule (by regulating 
chlorophyllase activity) with membrane protein 
and maintains stability of the thylakoid 
membranes. Brassinosteroids alleviate the 
adverse effect of different stress conditions and 
regulate the defense system by regulating 
transcription levels of defense genes as reported 
in cucumber [156]. BR is also regulating the 
Rubisco carboxylase activase (RCA) gene, which 
plays a key role in photosynthesis under drought 
and temperature stress in wheat and significantly 
increases the activities of antioxidant enzymes 
and the process of photosynthesis.  Many 
researchers reported that the total chlorophyll 
contents increased in the leaves of various crops 
by application of by application of 24-
epibrassinolide and 28-homobrassinolide 
[40,157-159]. Li et al. [102] reported that the 
brassinosteroid and redox signal hydrogen 
peroxide (H2O2) induce the breakdown of starch 
in guard cells, which promotes stomatal opening. 
BRASSINAZOLE-RESISTANT1 (BZR1) interacts 
with the basic leucine zipper transcription factor 
G-BOX BINDING FACTOR2 (GBF2) to promote 
the expression of β-AMYLASE1 (BAM1), which 
is responsible for starch degradation in guard 
cells. H2O2 induces BZR1 oxidation, enhancing 
the interaction between BZR1 and GBF2 to 
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increase BAM1 transcription. Mutations in BAM1 
lead to starch accumulation and reduce the 
effects of BR and H2O2 on stomatal opening. 
Brassinosteroids application has significant role 
in the enhancement of nitrate reductase in 
various crop plants [6,33,159,160]. Babalik et al 
[161] reported that the application of 24-
epibrassinolide (24-eBL) in grape plants 
increased yield, quality, and antioxidant 
compounds. The concentration 0.2 mg L−1 of 24-
eBL applied to vines at three times (7 days after 
berry set, day of change of colour of the berries, 
30 days after veraison) was the most suitable 
application providing the highest yield and some 
quality properties       such as cluster weight, 
berry weight, and specific gravity.  
 
6. BRASSINOSTEROIDS ON CROP YIELD  
 
Fruit development and crop yield have been 
intensively studied over the past few decade and 
a key challenge for scientists is to improve yield 
per unit area. Hayat et al., [157,158] reported 
that brassinosteroids helps significantly to 
increase yield and yield components in plant. 
Either foliar application or seed priming of 
brassinosteroids significantly enhanced growth    
of fruits as well as number of fruits          
[162,163]. Brassinosteroids played appositive 
role in fruit ripening and fruit growth and in        
the quality [156,162]. Brassinosteroids also 
reduce the harmful effect of stress by activating a 
plant defense system (antioxidants) against 
stress conditions and leading to significantly 
increased growth, yield, and yield components 
[164,165]. Foliar application BL also improved 
the yield of wheat and mustard, rice, corn and 
tobacco [166,167]. Brassinosteroids were also 
found to increase the growth and yield of sugar 
beet [168], legumes [169] and rape seed 
[157,158,170]. Treatment of 28-
homobrassinolide and 24-epibrassinolide 
significantly increased the yield of potato, 
mustard, rice and cotton [171] and Vigna radiata 
[172] respectively.  
 

7. BRASSINOSTEROIDS SIGNAL 
TRANSDUCTION PATHWAY AND 
MODE OF ACTION  

 
Major brassinosteroid (BR) effects such as the 
promotion of growth require mRNA and protein 
synthesis. The identification of BR-responsive 
genes proved to be highly useful for the 
exploration of signal perception and downstream 
signaling [173-175]. The gene products ultimately 
mediate BR responses in the nucleus and also 

extra cellular part of the transmembrane LRR 
receptor kinase BRI1 binds BR [176,177]. BRI1 
interacts with the LRR receptor kinase BAK1. BR 
binding to BRI1 inactivates the BIN2 kinase 
[174,178,179]. BIN2 phosphorylates BES1, thus 
targeting the protein for ubiquitination and 
subsequent proteasome-dependent degradation. 
In the presence of BR the BIN2 kinase becomes 
inactivated and the nuclear phosphatase BSU1 
promotes BES1 dephosphorylation. The 
accumulation of hypophosphorylated BES1 
correlates with changes in transcription of BR-
responsive genes (Fig. 3) [174]. The basic helix 
loop-helix protein BIM1 interacts with BES1. Both 
proteins synergistically bind and activate BR-
induced promoters [180]. The BZR1 protein is 
closely related to BES1 and represses BR 
biosynthetic genes. Abundance of the BRZ1 
protein is also affected by the BIN2 kinase. 
Further BES1 homologues (BEH1-4, BES1/BZR1 
homologue 1-4) function redundantly in BR 
signaling. 
 
8. GENES INVOLVED IN THE 

BIOSYNTHESIS OF BRASSINOSTER-
OIDS 

 
The brassinosteroid (BR) biosynthetic pathways 
consist of two major parts, sterol biosynthesis   
and a BR-specific pathway. Analysis of BR 
metabolic gene expressions indicate that BR 
homeostasis is maintained through feedback 
expressions of multiple genes, each of which is 
involved not onlyin BR-specific biosynthesis     
and inactivation, butalso in sterol biosynthesis 
[181]. They reported that there are two         
groups of BR dwarf loci reportedin      
Arabidopsis. The first group includesdwf1 to 
dwf8, and dwf12. The dwf1, dwf5,and dwf7 
mutants are defective in sterol biosynthesis. The 
second group including dwf3,dwf4, dwf6, and 
dwf8 belong to the BR specific pathway.          
Only dwf2 and dwf12 mutants areinsensitive to 
bioactive BRs. Except fordwf2 and dwf12    
alleles, all of the dwf mutants are highly 
responsive to exogenously application of  BRs. 
Choe et al. [182-184] first identified the dwf1 as 
BR-related gene. The three alleles dwarf1    
(dwf1), dimandcbb1 were unable to synthesis     
of campesterol from 24-methylenecholesterol 
[185,186,187]. BR intermediates showed that 24-
methylenecholesterol in dwf1 accumulated 12 
times the level more than the wild type [184]. In 
the lkb mutant type, the levels of 
BL,castastherone (CS), and 6-deoxoCS, 
campestanol, and campesterol were severely 
reduced in young shoots, however, levels of 24-
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methylenecholesterol were elevated, compared 
to those of wild-type plants. Some mutant alleles 
i.e. dwf3 have only been rescued by23-alpha-
hydroxylated BRs. The dwf4 mutant was also 
shown to bedefective in the BR biosynthetic 
pathway, more specifically in a steroid 
hydroxylation presenting 513 aminoacids and 
43%identity and 66% similarity with the cpd 
gene, which catalized a key regulatory step in 
BRs biosynthesis [188]. Choe et al [184] 
observed that transgenic Arabidopsis plants over 
expressing dwf4 (aod4) and enhances the  
hypocotyl length as compared to wild type. 
Bishop and Yokota [22] reported that dwarf5 
(dwf5) allele has been shown to be defective in 
there duction of 5-dehydroepisterol to 24-
methylenecholesterol.Choe et al. [183] reported 

that dwf7 allele resided before the production of 
24-methylenecholesterol in the sterol 
biosynthetic pathway, more specifically the 
dehydrogenation of episterol to 5-
dehydroepisterol, indicating that dwf7 was an 
allele of the previously cloned Arabidopsis 
sterol1 (ste1) gene [189]. An aother allele 
dwarf11, a rice (Oryza sativa) dwarf mutant, was 
defective for a novel cytochrome P450 
(CYP724B1), which showed homology to 
enzymes involved in BR biosynthesis. The 
dwarf11 gene is feedback-regulated by BL.      
They suggested that the dwarf11/cyp724b1gene 
plays a role in BR synthesis and may be involved 
in the supply of 6-deoxotyphasterol and 
typhasterol in the BR biosynthesis network in 
rice.  

 

 
 

Fig. 3. Model of BR signal transduction pathway 
The plasma membrane localized receptor kinase BRI1 is the major BR receptor. Brassinosteroids bind directly to 

the 70-amino acid island in the extracellular domain of BRI1. BAK1 is a likely co-receptor. Downstream from 
BRI1/ BAK1 in the BR pathway is the GSK3 kinase BIN2 which functions as a negative regulator. The 

transcription factors BES1 and BZR1 are substrates of BIN2. Phosphorylation of BES1 and BZR1 triggers their 
proteasome- mediated degradation. In the presence of BR, both proteins accumulate in the hypophosphorylated 

form and bind to specific promoter elements of BR-responsive genes. The nuclear phosphatise BSU1 
dephosphorylates BES1 and thus counters the effects of BIN2.The subcellular localization of BIN2 and other 

components is not yet clear. 
(Vert et al. [174]  & Mussig et al. [200]) 
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8.1 Genes Involved in the Signal 
Transduction Pathway of BRs 

 
Zurek and Clouse [190] identified bru1 in 
soybean, a gene specifically regulated by BRs 
during the early stages of elongation. BR 
application resulted in increased plastic 
extensibility of the elongating soybean epicotyls 
walls within 2h, with a concomitant increase in 
BRU1 mRNA levels. A direct relationship 
between the level of BRU1 transcripts and both, 
magnitude of BR-induced stem elongation and 
plastic extensibility of the cell wall was also 
demonstrated. BRU1 encodes a protein that 
shows significant homology to various xyloglucan 
endotransglycosylases (XETs), enzymes that 
specifically cleave xyloglucan chains and transfer 
a fragment of the cleaved chain to an acceptor 
xyloglucan, being the mechanism of BR 
regulation of BRU1 post transcriptional [191]. 
 
Vert et al. [174] reported that brassinolide binds 
directly to both, native and recombinant BRI1 
proteins. Friedrichsen et al. [192] reported that a 
BRI1::GFP (GFP, green fluorescent protein) 
fusion protein was located at the plasma 
membrane, which, along with the protein acting 
Ser/Thr phosphorylation suggested that BRs 
were perceived at the cell surface. There are 
more than 20 BR-insensitive mutants reported, 
cbb2, 18 bin and 3 alleles of dwf2, were all allelic 
to bril,BRI1 was the only unique and specific 
component of the BRs signal 
transductionpathway [3,177,193]. Li et al [48] 
identified inArabidopsis a dominant genetic 
suppressor of bri1,bak1-1d (bri1-associated 
receptor kinase 1-1Dominant). This gene 
encodes an LRR-RLKSerine/threonine protein 
kinase, which interact with bri1. bri1and bak1 can 
phosphorylate eachother, being the 
autophosphorylation activity ofbak1 enhanced by 
bri1. The BRI1-BAK1 receptor complex is now 
thought to initiates BR signaling [194]. The gene 
bak1 is believed to act as a co-receptor and/or 
downstream target of bri1 [174].Wang et al. [195]  
reported  that BZR1 is a transcriptional repressor 
that binds directly to the promoters of regulated 
BR biosynthetic genes. The BZR1 protein 
accumulates in the nucleus of elongating cells of 
dark-grown hypocotyls and has been shown to 
be a positive regulator of the BR signaling 
pathway. Thus, BZR1 coordinates BR 
homeostasis and signaling by playing dual roles 
in regulating BR biosynthesis and downstream 
BR responses. BZR1-BES1 family of proteins 
directly binds to and regulates BR-responsive 
genes, which establish a link between hormonal 

signal transmission in the cytoplasm and 
transcriptional status change in the nucleus 
[196]. Choe et al. [184] identified two new BR-
insensitive mutants (dwarf12-1d and dwf12-2d). 
The semi dominant dwf12 mutants displayed the 
typical morphology of previously reported BR 
dwarfs but they also exhibited several unique 
phenotypes such as severe downward curling of 
the leaves. Friedrichsen et al. [197] identified 
three genes (bee1, bee2, and bee3)in 
Arabidopsis, which shared high sequence 
identity, encoding putative basic helix-loop-helix 
(bHLH) proteins called BR Enhanced Expression 
(BEE1, BEE2, and BEE3). These functionally 
redundant, transcription factors, are induced 
within 30 min of treatment with BL being this 
induction dependent of functional BRI1 and 
independent of de novo protein synthesis, 
making these genes the first early response 
genes characterized in the BR signal 
transduction pathway. BEE1, BEE2, and BEE3 
were active throughout the plant, and mutants 
lacking all three proteins were less responsive to 
BRs. 
 
Sasuga et al. [198] identified a novel cDNA from 
BL-treated rice seedlings, tentatively named BR-
up regulated gene2 (bru2). Thebru2 could 
encode an actin effector protein that control 
polymerization of actin molecules, which 
provided evidence for the involvement of BRs 
onthe orientation of microtubules in plant cells. 
Coll-Gracia et al. [199] identified an exordium 
(exo) protein which acts as a regulator of BR-
responsive genes in A. thaliana. The exo gene 
was characterized as a BR-up-regulated gene. 
Over expression of exo resulted in increased 
transcript levels of the BR-up-regulated kcs1, 
exp5, delta -tip, and agp4 genes, thought to be 
involved in the BR-promoted growth. In addition, 
to that exo over expressing lines showed 
enhanced vegetative growth, resembling the 
features of BR treated plants. 
 

9. CONCLUSION 
 
Brassinosteroids (BRs) are efficiently used in 
plants as immune-modulators. BRs are 
implicated in plant responses to abiotic and biotic 
stresses with activation or suppression of key 
enzymatic reactions, production chemical 
defense compounds, induction of protein 
synthesis and induction of ethylene biosynthesis, 
root growth and development, pollen tube 
growth, activation of proton pump, activation of 
photosynthesis and antioxidant system. It has 
been utilized for plant resistance against different 
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stress environmental conditions and involved in 
the process of osmotic regulation, 
photosynthesis, nitrogen metabolism, antioxidant 
activity and water relationship in plants. BRs 
have been used in different horticultural crops 
particularly application of exogenously which 
influences better growth, vascular differentiation, 
stress  tolerance, pathogen resistance, pollen 
viability, fruit setting, yield and quality etc. Based 
on published literatures, it has been concluded 
that BRs and their analogues are the sixth group 
of phytohormones, which promote the growth 
and metabolism besides the classical growth 
regulators. It has interaction with other 
phytohormones and polyamine for enhancing the 
growth and metabolism. Molecular studies 
underlying those BRs provide new approaches 
for creating best root systems for efficient water 
and nutrient uptake abilities that can sustain crop 
biomass and yield.   
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