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Abstract 
 

This article develops an extension of the Rayleigh distribution with two parameters and greater flexibility 
which is an improvement over Lindley distribution, Rayleigh distribution and other generalizations of the 
Rayleigh distribution. The new model is known as “odd Lindley-Rayleigh Distribution”. The definitions 
of its probability density function and cumulative distribution function using the odd Lindley-G family of 
distributions are provided. Some properties of the new distribution are also derived and studied in this 
article with applications and discussions. The estimation of the unknown parameters of the proposed 
distribution is also carried out using the method of maximum likelihood. The performance of the 
proposed probability distribution is compared to some other generalizations of the Rayleigh distribution 
using three simulated datasets and a real life dataset. The results obtained are compared using the values 
of some information criteria evaluated with the parameter estimates of the fitted distributions based on the 
four datasets and it is revealed that the proposed distribution outperforms all the other fitted distributions. 
This performance has shown that the odd Lindley-G family of distribution is an adequate generator of 
probability models and that the odd Linley-Rayleigh distribution is a very flexible distribution for fitting 
different kinds of datasets better than the other generalizations of the Rayleigh distribution considered in 
this study. 
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1 Introduction 
 
The Rayleigh distribution was obtained from the amplitude of sound resulting from many important sources 
by Rayleigh [1]. It is a continuous probability distribution with a wide range of applications such as in life 
testing experiments, reliability analysis, applied statistics and clinical studies. This distribution is a special 
case of the two parameter Weibull distribution with the shape parameter equal to 2. Its origin and other 
important features can be found in the work of Siddiqui [2], Hirano [3] as well as Howlader and Hossian [4]. 
 
A random variable X is said to have follow Rayleigh distribution with parameter θ if its probability density 
function (pdf) is given by: 
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And its corresponding cumulative distribution function (cdf) is given as 
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for 0, 0x    where Ө is the scale parameter. 

 
Due to the wide range of applications associated with the Rayleigh distribution, many authors have 
constructed different extensions of the distribution which have led to some flexible and good distributions 
such as the generalized Rayleigh distribution by Kundu et al. [5], Bivariate generalized Rayleigh distribution 
by Abdel-Hady [6], Transmuted Rayleigh distribution by Merovci [7], generalized Weibull-Rayleigh 
distribution by Yahaya and Alaku [8], Weibull-Rayleigh distribution by Merovci and Elbatal [9], transmuted 
Weibull-Rayleigh distribution by Yahaya and Ieren [10] as well as the Transmuted Inverse Rayleigh 
distribution studied by Ahmad et al. [11]. 
 
Besides these generalized Rayleigh distributions, some researchers have proven that most extended or 
compound distributions are more flexible and perform better than their standard counterparts when applied 
to real life datasets. For instance, the Weibull-Exponential distribution was found to perform better than the 
Exponential distribution (Oguntunde et al. [12]), the Weibull-Frechet distribution exhibited a very higher 
level of flexibility when applied to real life data compared to the standard Frechet distribution (Afify et al. 
[13]), the Lomax-Exponential distribution was also discovered to have perform better when compared to the 
exponential distribution during real life data analysis (Ieren and Kuhe, [14]), others are the Weibull-Lindley 
distribution by Ieren et al. [15], the Gompertz-Lindley distribution by Koleoso et al. [16], the Lomax-inverse 
Lindley distribution by Ieren et al. [17], the transmuted Lindley-Exponential distribution by Umar et al. [18], 
the Power Gompertz distribution by Ieren et al. [19] and many others. 
 
Motivated by these results and evidence, it is therefore hopeful that the proposed distribution will be a more 
robust distribution with greater degree of skewness and flexibility. To this fact, this study aim at extending 
the Rayleigh distribution by using the Odd Lindley-G family to introduce a new distribution called “Odd 
Lindley-Rayleigh distribution”. 
 
The main aspects of this article are written in readable sections as follows. The definition of the new 
distribution and its plots are provided in section 2 under 2.1. Sub-section 2.2 derived some Mathematical and 
Statistical properties of the new distribution including estimation of unknown parameters of the proposed 
model using maximum likelihood estimation (MLE) provided in sub-section 2.2.7. In section 3 the proposed 



 
 
 

Ieren et al.; JAMCS, 35(1): 63-88, 2020; Article no.JAMCS.54717 
 
 
 

65 
 
 

distribution with some competing distributions are applied to three simulated datasets and a real life dataset 
under results and discussions. Finally, a brief summary with some useful conclusions are given in section 4. 
 

2 Materials and Methods 
 
2.1 Odd Lindley Rayleigh Distribution, OLRD 
 
The Lindley distribution introduced by Lindley [20] in the context of Bayesian analysis as a counter example 
of fiducial statistics, is defined by its probability density function (pdf) and cumulative distribution function 
(cdf) as: 
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respectively.  For 0, 0,t    where   is the scale parameter of the Lindley distribution. 

 

For any continuous distribution with cdf  ( ; )G x G x   and pdf, ( ; ) ( )g x g x   Gomes-Silva et al. 

[21] proposed the Odd Lindley-G family of distributions that generates distributions with greater flexibility 
in modeling of real life datasets. 
 
The cumulative distribution function (cdf) of the Odd Lindley-G family of distributions according to Gomes-
Silva et al. [21] is defined as:  
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where ( ; )G x   is the cdf of any continuous distribution to be extended which depends on the parameter 

vector   and 0   is the shape parameter of the Odd Lindley-G family while ( ; ) 1 ( ; )G x G x   . 

 
Using integration by substitution in the equation above and evaluating the integrand in equation (2.3) yields 
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Therefore, equation (2.4) is the cumulative distribution function (cdf) of the Odd Lindley-G family of 
distributions proposed by Gomes-Silva et al. [21] and the corresponding pdf of the Odd Lindley-G family 
can be obtained from equation (2.4) by taking the derivative of the cdf with respect to x and is obtained as: 
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where ( ; )g x  and ( ; )G x  are the pdf and the cdf of any continuous distribution to be modified 

respectively which depends on the parameter vector   and 0   is the shape parameter of the odd 
Lindley-G family of distributions. 
 

Substituting equation (1.1) and (1.2) in equation (2.4) and (2.5) and simplifying, the cdf and pdf of the Odd 
Lindley-Rayleigh distribution are obtained as: 
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and 
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respectively. Hence equation (2.6) and (2.7) are the cdf and pdf of the Odd Lindley-Rayleigh distribution. 
 
The following is a graphical representation of the pdf and cdf of the odd Lindley-Rayleigh distribution for 
selected parameter values. 
 

 
 

Fig. 2.1. PDF and CDF of the OLRD for selected values of  and   
 

The plot for the pdf reveals that the OLRD is skewed with various shapes and therefore will be a good model 
for different kinds of datasets.  
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2.2 Mathematical and statistical properties of OLRD 
 
In this sub-section, some properties of the OLRD distribution are defined and discussed vividly as follows: 
 
2.2.1 Moments 
 
Let X denote a continuous random variable, the nth moment of X is given by; 
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where f(x) the pdf of the odd Lindley-Rayleigh distribution is as given in equation (2.7) as: 
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Before substitution in (2.8), we perform the expansion and simplification of the pdf  as follows: 
 
First, by expanding the exponential term in (2.9) using power series, we obtain: 
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Making use of the result in (2.10) above, equation (2.9) becomes 
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Also, using the generalized binomial theorem, we can write the last term from the above result as: 
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Making use of the result in (2.12) above, equation (2.11) becomes 
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Hence, 
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Using integration by substitution in (2.14) above and simplifying, we obtain 
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Recall that 
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The Mean: 
 
The mean of the OLRD can be obtained from the nth moment of the distribution when n=1 as follows:  
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Also the second moment of the OLRD is obtained from the nth moment of the distribution when n=2 as 
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The Variance: 
 
The nth central moment or moment about the mean of X, say ��, can be obtained as: 
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The variance of X for OLRD is obtained from the central moment when n=2, that is, 
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The variation, skewness and kurtosis measures can also be calculated from the non-central moments using 
some well-known relationships. 
 
2.2.2 Moment generating function 
 
This is a more organized approach of presenting all the moments into one mathematical function, and that 
function is called the moment generating function (mgf). In other words, the mgf generates the moments of 

X  by differentiation i.e., for any real number say k , the 
thk derivative of  XM t  evaluated at 0t  is 
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The mgf of a random variable X can be obtained by: 
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Recall that by power series expansion, 
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Using the result in equation (2.23) and simplifying the integral in (2.22), therefore we have; 
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2.2.3 Characteristics function 
 
The characteristics function has many useful and important properties which give it a central role in 
statistical theory. Its approach is particularly useful for generating moments, characterization of distributions 
and in analysis of linear combination of independent random variables. 
 
The characteristics function of a random variable X is given by; 
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Recall from power series expansion that 
 

 
 

2

2

0

1
cos( )

2 !

k k

k

k

t
tx x

k








   and 

 
 
 

2
'

2
0

1
cos( )

2 !

k k

k
k

t
E tx

k









 
 

And also that 
 

 
 

2 1

2 1

0

1
sin( )

2 1 !

k k

k

k

t
tx x

k












    and  

 
 
 

2 1
'

2 1
0

1
sin( )

2 1 !

k k

k
k

t
E tx

k













 



 
 
 

Ieren et al.; JAMCS, 35(1): 63-88, 2020; Article no.JAMCS.54717 
 
 
 

70 
 
 

 
Simple algebra and power series expansion proves that 
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Where ���

�  and �����
� are the moments of X for n=2k and n=2k+1 respectively and can be obtained from ��
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respectively. 
 
2.2.4 Reliability analysis 
 
Survival Function: Survival function is the likelihood that a system or an individual will not fail after a 
given time. Mathematically, the survival function is given by: 
 

   1S x F x 
                                                                                                                   (2.27) 

 

Substituting for  F x , the cdf of the odd Lindley-Rayleigh distribution and simplifying give the survival 

function of the proposed distribution as: 
 

 

2
2

2
2 11

( )
1

x
x

eS x e e








 
   
 





                                                                                                  (2.28) 

 

Hazard Function: Hazard function is the probability that a component will fail or die for an interval of 
time. The hazard function is defined as; 
 

 
 
 

 
 1

f x f x
h x

F x S x
 


                                                                                                      (2.29) 
 

Again replacing f(x) and F(x), the pdf and cdf of the proposed odd Lindley-Rayleigh distribution and 
simplifying the results gives the hazard function of OLRD as: 
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                                                                                                                  (2.30) 

The following are some possible curves for the survival function and hazard rate for selected parameters 
values of the model parameters. 
 

 
 

Fig. 2.2. Survival function of the OLRD at different parameter values as shown on the plot using the 
key above 

 

The graphs in Fig. 2.2 show that the probability of survival equals one (1) at initial time or early age and it 
decreases as X (time) increases and equals zero (0) as X approaches infinity. It can also be seen that the 
hazard function increases as X (time) increases. This means that the OLRD may be appropriate for modeling 
time dependent events, where risk or hazard increases with time or age. 
 
2.2.5 Quantile function 
 
Hyndman and Fan [22] defined the quantile function for any distribution in the form 

   1
qQ u X F u   where  Q u  is the quantile function of F(x) for 0 1u  . 

 

Taking F(x) to be the cdf of the OLRD and inverting it as above will give us the quantile function as follows: 
 

 

2 2
2 2

2 2
2 2

1
( ) 1 exp

1

x x

x x

e e
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e e
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 

    
     

                                                                (2.31) 
 

Solving equation (2.31) above gives: 
 

    
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2 2

2 2
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11 1 exp
x x

x x

e e
u e

e e
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 

 

   
      

                                                    (2.32) 
 



 
 
 

Ieren et al.; JAMCS, 35(1): 63-88, 2020; Article no.JAMCS.54717 
 
 
 

72 
 
 

Using the expression in (2.32) above, it can be seen that 

2
2

2
2

x

x

e

e





 




  is the Lambert function of the real 

argument,     11 1 eu       since the Lambert function is defined as:    ew xw x x
.
 

Also note that the Lambert function has two branches with a branching point located at  1e ,1 . The 

lower branch,  1W x  is defined in the interval 
1e ,1    and has a negative singularity for 

10x  . 

The upper branch, 
 0W x

, is defined for 

1e ,x      . Hence, equation (2.32) can be written as: 
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                                                                           (2.33) 
 

Now for any 0   and  0,1u , it follows that 

2
2

2
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1
x

x

e

e





 




  and       11 1 e 0u      . 

Therefore, considering the lower branch of the Lambert function, equation (2.33) can be presented as: 
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                                                                        (2.34) 
 

Collecting like terms in equation (2.34) and simplifying the result, the quantile function of the OLRD is 
obtained as: 
 

       1

1

2 1
log 1 1 1Q u W u e 

 
 



                                                       (2.35) 
 

where u is a uniform variate on the unit interval (0,1) and  1 .W represents the negative branch of the 

Lambert function. 
 

The median of X from the OLRD is simply obtained by setting u=0.5 and this substitution of 0.5u  in 
equation (2.35) gives: 
 

    11
1 2

2 1
log 1 1MD W e 

 
 



                                                                  (2.36) 
 

Similarly, random numbers can be simulated from the OLRD by setting 
 Q u X

 and this process is 

called simulation using inverse transformation method. This means for any , 0    and 
 0,1u

: 
 

     1

1

2 1
log 1 1 1X W u e 

 
 



                                                             (2.37) 
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“where u is a uniform variate on the unit interval (0,1) and  1 .W represents the negative branch of the 

Lambert function”. 
 

Again using the quantile function above, the quantile based measures of skewness and kurtosis are obtained 
as follows: 
Kennedy and Keeping [23] defined the Bowley’s measure of skewness based on quartiles as: 
 

     
   

3 1 12
4 2 4

3 1
4 4

Q Q Q
SK

Q Q

 



                                                                                     (2.38) 

 
And Moors [24] presented the Moors’ kurtosis based on octiles by: 
 

       
   

7 5 3 1
8 8 8 8

6 1
8 8

Q Q Q
KT

Q Q

  



                                                                          (2.39) 

 

“where 
 .Q

 is calculated by using the quantile function from equation (2.35). 
 
2.2.6 Order statistics 
 
Sample values such as the smallest, largest, or middle observation from a random sample provide important 
information. For example, the highest rainfall, flood or minimum temperature recorded during past years 

might be useful when planning for future emergencies. Let  1X
 denote the smallest of 1 2, ,...., nX X X

, 

 2
X

 denote the second smallest of 1 2, ,...., nX X X
, and similarly  iX

 denote the 
thi  smallest of 

1 2, ,...., nX X X
. Then the random sample,       1 2

, ,....,
n

X X X
, called the order statistics of the sample 

1 2, ,...., nX X X
, thus the pdf of the 

thi  order statistic,  iX
, is given by: 
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Where  f x  and  F x   are the pdf and cdf of the proposed distribution respectively. 

 

Using (2.6) and (2.7), the pdf of the 
thi  order statistics :i nX

, can be expressed from (2.40) as  
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Hence, the pdf of the minimum order statistic  1X  and maximum order statistic  n
X  of the OLRD are 

given by; 
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and 
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                                                  (2.43) 
 

respectively. 
 

2.2.7 Estimation of parameters of OLRD using maximum likelihood method 
 

Let 1 2, ,..., nX X X  be a sample of size " "n  independently and identically distributed random variables 

from the OLRD with unknown parameters   and  defined previously. 
 
The likelihood function is given by: 
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                                                                         (2.44) 
 

Let the log-likelihood function be  log | ,l L X   , therefore 
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                            (2.45) 
 

Differentiating � partially with respect to α  and θ respectively gives: 
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The solution of the non-linear system of equations of 0,
dl

d
 and 0







l
will give us the maximum 

likelihood estimates of parameters  and . However, the solution cannot be gotten analytically except 
numerically with the aid of suitable statistical software like R, SAS, e.t.c when data sets are available. 
Hence, the package named “AdequacyModel” was used in R software to estimate the parameters of the 
proposed model during the process of applications. 
 

3 Results and Discussion 
 
This section presents three simulated and one real life datasets, their descriptive statistics, graphical 
summary and applications using some selected generalizations of the Rayleigh distribution to the datasets. 
Five models (the Transmuted Weibull-Rayleigh distribution (TWRD), Weibull-Rayleigh distribution (WRD), 
the Transmuted Rayleigh distribution (TRD), Lindley distribution (LD) and the Rayleigh distribution (RD)) 
are applied to the four datasets together with the proposed distribution (OLRD) and their performance is 
being evaluated and compared under this section using four information criteria. 
 

In order to evaluate and compare the performance of the models listed above, some model selection criteria 
have been utilized which include AIC (Akaike Information Criterion), CAIC (Consistent Akaike Information 
Criterion), BIC (Bayesian Information Criterion) and HQIC (Hannan Quin information criterion). The 
formulas for these statistics are given as follows: 
 

2 2AIC ll k   , 
 2 log ,BIC ll k n    

2
1

2 kn
n k

CAIC ll
 

  
 and 

 2 2 log logHQIC ll k n       
 

where ƖƖ denotes the log-likelihood value evaluated with the maximum likelihood estimates (MLEs), k is the 
number of model parameters and n is the sample size. The model with the lowest values of these statistics 
would be chosen as the best model to fit any of the datasets. 
 

Data set I: This data set represents 25 identically and independently distributed random samples from the 
proposed distribution using its quantile function at some selected values of the parameters.  Its summary is 
given as follows: 
 

Table 3.1. Descriptive statistics for dataset I 
 

n Minimum 
1Q

 
Median 

3Q
 

Mean Maximum Variance Skewness Kurtosis 

25 0.2394 0.832 1.1166 1.5173 1.1187 1.8964 0.2025 -0.1833 -0.9056 
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Fig. 3.1. A graphical summary of Dataset I 
From the descriptive statistics in Table 3.1 and the histogram, box plot, density and normal Q-Q plot shown 
in Fig. 3.1 above, we observed that dataset (dataset I) is approximately normal, that is, neither skewed to the 
right nor left and therefore not suitable for distributions that are skewed. 
 

Table 3.2. Performance of the distribution using the AIC, CAIC, BIC and HQIC values of the models 
based on simulated dataset I when n=25 

 

Distributions Parameter 
estimates  

-ƖƖ AIC CAIC BIC HQIC Ranks of 
models  

OLRD ̂ =1.1199 

̂ =1.1414 

10.0423 24.0845 24.6300 26.5223 24.7607 1 

TWRD ̂ =0.1260 

̂ =9.5775 

̂
=0.8422 

̂ =-0.4783 

21.9526 51.9052 53.9052 56.7807 53.2575 5 

WRD ̂ =0.2779 

̂ =8.5750 

̂
=1.3773 

32.5378 71.0755 72.2184 74.7322 72.0897 6 

TRD ̂ =0.7230 

̂ =0.9985 

14.7251 33.4502 33.9957 35.8880 34.1263 3 

RD ̂ =1.5325 
14.6776 31.3551 31.5290 32.5740 31.6932 2 

LD ̂ =1.3262 
24.9092 51.8183 51.9923 53.0372 52.1564 4 
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Fig. 3.2. Histogram and plots of the estimated densities (pdfs) and cdfs of the OLRD, TWRD, WRD, 
TRD, RD and LD fitted to dataset I 

Table 3.2 presents the parameter estimates and the values of -ƖƖ, AIC, BIC, CAIC and HQIC for the six fitted 
models using simulated data when the sample size is 25 (n=25). The values in the above table reveal that the 
OLRD has better performance with the lowest values of AIC, CAIC, BIC and HQIC compared to the other 
five models. 
 
The Fig. 3.2 displayed the histogram and estimated densities and cdfs of the fitted models for dataset I. 
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Fig. 3.3. Probability plots for the fit of the OLRD, TWRD, WRD, TRD, RD and LD based on dataset I 
 
From the estimated density plots in Fig. 3.2 it is very clear that the OLRD fits the data much better than the 
other five distributions. This performance shows that the OLRD is flexible and can take different shapes or 
fit various datasets because the first dataset (dataset I) is normally distributed while the OLRD is skewed and 
can be more useful for skewed datasets. Again the Q-Q plots also confirm that fact that even though the 
OLRD has a better fit for the data, it is not a very good model because the dataset used is normally 
distribution while the distribution is a skewed distribution.  
  

Data set II: This data set represents 75 random samples from the odd Lindley-Rayleigh distribution 
obtained by using the quantile function derived from the distribution. These sample values are summarized 
as follows: 
 

Table 3.3. Descriptive statistics for dataset II 
 

n Minimum 
1Q

 
Median 

3Q
 

Mean Maximum Variance Skewness Kurtosis 

75 0.0514 0.6751 1.0105 1.3029 0.9702 1.9777 0.2108 -0.1463 -0.6230 
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Fig. 3.4. A graphical summary of Dataset II 
 
Based on the descriptive statistics from Table 3.3 and the histogram, box plot, density and normal Q-Q plot 
from Fig. 3.4 we can see that dataset (dataset II) is normal, that is, not skewed and therefore not suitable for 
distributions that are skewed. 
 

Table 3.4. Performance of the distribution using the AIC, CAIC, BIC and HQIC values of the models 
based on simulated dataset II when n=75 

 
Distributions Parameter 

estimates  
-ƖƖ=(-log-
likelihood 
value) 

AIC CAIC BIC HQIC Ranks 
of 
models  

OLRD ̂ =1.0090 

̂ =1.3602 

33.7660 71.5319 71.6986 76.1669 73.3826 1 

TWRD ̂ =0.1535 

̂ =9.6230 

̂
=0.9222 

̂ =-0.3811 

67.3211 142.642 143.2137 151.9122 146.3436 5 

WRD ̂ =0.2779 

̂ =8.5750 

̂ =1.3773 

96.4854 198.971 199.3087 205.9232 201.7468 6 

TRD ̂ =0.8426 

̂ =0.9452 

43.5922 91.1843 91.3509 95.8192 93.0350 3 

RD ̂ =1.6791 43.0834 88.1667 88.2215 90.4842 89.0921 2 

LD ̂ =1.3968 70.7841 143.5681 143.6229 145.8856 144.4935 4 

 

Again, Table 3.4 also gives the parameter estimates and the values of all the performance measures for the 
six fitted distributions when the sample is increased to 75 (n=75). Based on the values in the above table, we 
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also conclude that the OLRD fits the simulated data better than the other five distributions (TWRD, TRD, 
RD,WRD & LD) and  is the most fitted for this dataset (n=75). 
The following figure displayed the histogram and estimated densities and cdfs of the fitted models for 
dataset II. 
 

 
 

Fig. 3.5. Histogram and plots of the estimated densities (pdfs) and cdfs of the OLRD, TWRD, WRD, 
TRD, RD and LD fitted to dataset II 
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Fig. 3.6. Probability plots for the fit of the OLRD, TWRD, WRD, TRD, RD and LD based on dataset 
II 

Using the estimated densities in Fig. 3.5 and the Q-Q plots in Fig. 3.6, it is again shown that the OLRD 
though not a normal model has a better fit to the data than the other distributions (TWRD, WRD, TRD, RD 
and LD) which again confirm the fact that it is a very flexible distribution and can take the form of various 
datasets irrespective their distribution or nature. 
 
Data set III: The third dataset represents 125 samples simulated from the odd Lindley-Rayleigh distribution 
using the quantile function of the distribution. The descriptive statistics for this data are as follows: 
 

Table 3.5. Descriptive statistics for data set III 
 

n Minimum 
1Q

 
Median 

3Q
 

Mean Maximum Variance Skewness Kurtosis 

125 0.1150 0.6933 0.9586 1.236 0.957 1.795 0.1602 -0.0222 -0.6587 
 

 
 

Fig. 3.7. A graphical summary of Dataset III 
 
The descriptive statistics in Table 3.5 and the histogram, box plot, density and normal Q-Q plot shown in 
Fig. 3.7 above show that dataset (dataset III) is normal. 
 

Table 3.6. Performance of the distribution using the AIC, CAIC, BIC and HQIC values of the models 
based on simulated dataset III when n=125 

 
Distributions Parameter 

estimates  
-ƖƖ=(-log-
likelihood 
value) 

AIC CAIC BIC HQIC Ranks 
of 
models  

OLRD ̂ =0.7375 

̂ =2.2749 

61.7909 127.5819 127.6802 133.2385 129.8799 1 

TWRD ̂ =0.0529 

̂ =5.9760 

̂
=0.7987 

105.9874 219.9748 220.3081 231.2881 224.5708 4 
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Distributions Parameter 
estimates  

-ƖƖ=(-log-
likelihood 
value) 

AIC CAIC BIC HQIC Ranks 
of 
models  

̂ =0.8809 
WRD ̂ =0.2779 

̂ =8.5750 

̂
=1.3773 

156.3396 318.6792 318.8775 327.1641 322.1262 6 

TRD ̂ =0.8904 

̂ =0.9853 

70.04084 144.0817 144.1800 149.7383 146.3797 3 

RD ̂ =1.82017 
69.7792 141.5584 141.5909 144.3867 142.7074 2 

LD ̂ =1.4483 
113.1006 228.2012 228.2337 231.0295 229.3502 5 

 
We can as well see from this table, Table 3.6 that the proposed distribution, OLRD has smaller values of -ƖƖ, 
AIC, BIC, CAIC and HQIC compared to the other five distributions. 
 
The following figure displayed the histogram and estimated densities and cdfs of the fitted models for 
dataset III. 
 

 
 

Fig. 3.8. Histogram and plots of the estimated densities (pdfs) and cdfs of the OLRD, TWRD, WRD, 
TRD, RD and LD fitted to dataset III 

 
Similarly, the estimated densities in Fig. 3.8 and the Q-Q plots in Fig. 3.9, show that the OLRD though not a 
normal distribution has a better fit to the simulated data for n=125 (dataset III) than the other five 
distributions (TWRD, WRD, TRD, RD and LD) which proves the fact that it is more flexible than the other 
distributions and can model various datasets no matter the distribution of the data. 
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Fig. 3.9. Probability plots for the fit of the OLRD, TWRD, WRD, TRD, RD and LD based on dataset 
III 

 

Data set IV: This is a real life dataset and it represents the strength of 1.5 cm glass fibers initially collected 
by members of staff at the UK national laboratory. It has been used by Afify and Aryal [25], Barreto-Souza 
et al. [26], Bourguignon et al. [27], Oguntunde et al. [12], Ieren et al. [15], Ieren and Yahaya [28], Yahaya 
and Ieren [29], Koleoso et al. [16] as well as Smith and Naylor [30]. Its summary is given as follows: 
 

Table 3.7. Descriptive Statistics for the real life dataset (Dataset IV) 
 

n Minimum 1Q  Median 3Q  Mean Maximum Variance Skewness Kurtosis 

63 0.550 1.375 1.590 1.685 1.507 2.240 0.105 -0.8786 3.9238 
 

 
 

Fig. 3.10. A graphical summary the real life data (Dataset IV) 
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Considering the descriptive statistics in Table 3.7 and the histogram, box plot, density and normal Q-Q               
plot shown in Fig. 3.10 above, it is revealed that the real life dataset (dataset IV) is negatively skewed,              
that is, skewed to the left and therefore most suitable for distributions that are skewed just like the                  
OLRD. 
 
Table 3.8. Performances of the distributions using the AIC, CAIC, BIC and HQIC values of the models 

based on the real life dataset (the strength of 1.5 cm glass fibers) 
 

Distributions Parameter 
estimates  

-ƖƖ=(-log-
likelihood 
value) 

AIC CAIC BIC HQIC Ranks 
of 
models  

OLRD ̂ =1.5255 

̂ =0.2648 

15.1622 34.3244 34.5244 38.6107 36.0102 1 

TWRD ̂ =0.0551 

̂ =8.0918 

̂
=0.7582 

̂ =-0.7960 

67.0918 142.1835 142.8732 150.7561 145.5552 4 

WRD ̂ =0.1708 

̂ =7.7896 

̂
=1.5159 

90.9095 187.8191 188.2258 194.2485 190.3478 6 

TRD ̂ =0.7840 

̂ =0.0169 

50.1225 104.245 104.445 108.5313 105.9308 3 

RD ̂ =0.8425 
49.7909 101.5818 101.6474 103.7249 102.4247 2 

LD ̂ =0.9962 
81.2785 164.5569 164.6225 166.7000 165.3998 5 

 
Again we can as well see from the table above that the OLRD has smaller values of -ƖƖ, AIC, BIC, CAIC and 
HQIC compared to the other five distributions using the real life dataset. The values in the above table also 
provide evidence for us to agree that the OLRD fits both the real life and simulated data better than the other 
five models. This therefore proves that the OLRD could be used to model all kinds of data sets both real and 
simulated. 
 
The Fig. 3.11 displayed the histogram and estimated densities and cdfs of the fitted models for dataset                   
IV. 
 
Looking at the estimated densities (pdfs) in Fig. 3.11 it can be seen clearly that the OLRD has a better fit to 
the real life dataset (dataset IV) than TWRD, WRD, TRD, RD and LD. The reason is that the real life dataset 
(dataset IV) is skewed to the left while the OLRD is also a skewed model and hence should perform better 
the other five distributions. Again the Q-Q plots in Fig. 3.12 also confirm that the proposed distribution is 
more flexible than the other five distributions as already shown previously with simulated datasets of sizes 
n=25, n=75 and n=125. 
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Fig. 3.11. Histogram and plots of the estimated densities (pdfs) and cdfs of the OLRD, TWRD, WRD, 
TRD, RD and LD fitted to dataset IV 

 

 
 

Fig. 3.12. Probability plots for the fit of the OLRD, TWRD, WRD, TRD, RD and LD based on dataset 
IV 
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4 Conclusion 
 
In this paper, a new two-parameter continuous distribution has been proposed named “odd Lindley-Rayleigh 
distribution”. Some mathematical and statistical properties of the proposed distribution have been studied 
appropriately. The derivations of some expressions for its validity, moments, moment generating function, 
characteristics function, survival function, hazard function, quantile function and ordered statistics has been 
done appropriately. Some plots of the distribution revealed that it can take any shape depending on values of 
the parameters. The model parameters have been estimated using the method of maximum likelihood 
estimation. The implications of the plots for the survival function indicate that the OLRD has a decreasing 
survival rate and an increasing failure function. The results of the three applications to simulated datasets 
and the one real life dataset showed that the proposed distribution (odd Lindley-Rayleigh distribution) 
performs better than the transmuted Weibull-Rayleigh distribution (TWRD), Weibull-Rayleigh distribution 
(WRD), transmuted Rayleigh distribution (TRD), Lindley distribution (LD) and the Rayleigh distribution 
(RD) irrespective of the nature of the data sets and the sample sizes. This implies that the OLRD is a very 
flexible model and can be used for all forms of data in different fields. Based on the usefulness and 
performance of this distribution (OLRD) and the significance of parameter estimation methods in the 
application of any model, it is recommended that future research in this area should compare different 
methods of estimation on the two parameters of the proposed probability distribution (Odd Lindley-Rayleigh 
distribution). 
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