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ABSTRACT

The appropriate placements of the four-dimensional spacetimes of different universes make their
coexistence possible, such that corresponding points in spacetimes within the universes are not
separated in space or time. The corresponding points do not touch, because they are points in
separate spacetimes. The different universes are described heuristically as existing in separate
spacetime ‘compartments’. This new conception of many worlds (or universes) is therefore entitled
compartment worlds (or universes) in this article. Compartment universes is a potential platform for
many-world interpretations and uniform formulation of the natural laws. The two-world background
of the special theory of relativity (SR) (involving two compartment universes), demonstrated
elsewhere, is re-interpreted as four-world background (involving four compartment universes) in
this article.
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1 INTRODUCTION

A new concept of many worlds (or universes) in
which different four-dimensional spacetimes of
other universes coexist with the four-dimensional
spacetime of our universe, started with a
pair of such universes in [1, 2], is further
extended in this paper. The appropriate relative
placements of the four-dimensional spacetimes
of different universes make their coexistence
at the same point possible. This means that
corresponding (or symmetry-partner) points in
the different spacetimes of the universes are
effectively not separated in space or time, but
they do not touch, because they are points
in different spacetimes. Coexisting universes
in separate four-dimensional spacetimes (or
separate spacetime ‘compartments’) is entitled
compartment universes in this paper.

The problem of placing the four-dimensional
spacetimes of immense extents of coexisting
different universes must have made the
conception of compartment universes impossible
until now. Moreover a theory that could furnish
the four-dimensional spacetimes of coexisting
universes and describe their relative placements
has eluded investigation in physics until now.

The pair of compartments universes, referred
to as our (or positive) universe and negative
universe, shown to constitute two-world
background for the special theory of relativity
(SR) in each universe in previous papers [1, 2],
have coexisting four-dimensional spacetimes
of equal extents, which are four-dimensional
inversions of each other and are separated
by event horizon. Particles and bodies are
symmetrically distributed in the two universes
and the two universes exhibit perfect symmetry
of natural laws, as demonstrated in [2].

The multiverse of inflationary cosmology, Linde
and Vachurin [3]; Buosso and Susskind [4];
Deutsche [5]; Aguirre and Tegmark [6] and
others, can have dimensions of different extents
and accommodate different laws. They are
not compartment universes. The parallel

branes of the string theory can have different
number of dimensions of different extents
and accommodate different laws, Maartens
and Koyama [7]. They are not compartment
universes either. The many worlds of many-world
interpretation of quantum mechanics, Everett
[8]; Wheeler [9]; DeWitt [10, 11]; Kent [12] and
others.

The two-world background of SR demonstrated
by reformulating SR on the spacetime hyperplane
of combined flat spacetimes of our (or positive)
universe and negative universe, in each of the
two universes in [1, 2], is re-interpreted as four-
world background in this paper. A new pair of
four-dimensional spacetimes that lie ‘orthogonal’
to the spacetimes of our (or positive) universe
and the negative universe, is derived by a simple
and brief geometrical procedure. The universes
associated with the new pair of spacetimes are
appropriately referred to as positive time-universe
and negative time-universe.

The isolated four coexisting universes in separate
spacetimes in this paper and the previous
papers [1, 2] namely, our (or positive) universe,
negative universe, positive time-universe and
negative time-universe, have four-dimensional
spacetimes of equal extents. Material particles
and bodies are symmetrically distributed in them,
as demonstrated in this paper. Thus the number
of compartments universes has been increased
to four in this paper.

The two-dimensional intrinsic spacetime
containing intrinsic masses of particles and
bodies, which underlies (or is embedded in)
the four-dimensional spacetime containing the
masses of particles and bodies, introduced
(as ansatz) in the two-world picture in [1], is
derived in the larger four-world picture in this
paper. As the special theory of relativity (SR)
with Lorentz transformation (LT) and its inverse,
operates on flat four-dimensional spacetime, the
intrinsic special theory of relativity (∅SR) with
intrinsic Lorentz transformation (∅LT) and its
inverse, operates on flat two-dimensional intrinsic
spacetime in each universe, as developed in [1].
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The new spacetime/intrinsic spacetime
geometrical representation of the Lorentz
transformation and intrinsic Lorentz
transformation, developed in the two-world
picture in [1], is shown to be rooted in the four-
world picture in this paper. Two outstanding
issues about the new geomeetry in the two-world

picture are resolved in the four-world picture in
this paper. The definite four-world background
of special relativity (or four-world interpretation
of the theory) is established in this paper. A
less-developed form of a part of this paper has
appeared in [13].

2 ISOLATING ANOTHER SPACETIME THAT LIES ‘ORTHOGONAL’
TO OUR SPACETIME

Let us start with an attempt to compose a pair of three-dimensional Euclidean spaces into one
compound flat six-dimensional space with a proviso that the six dimensions of the resulting compound
space are mutually orthogonal. Thus let a three-dimensional Euclidean space (Euclidean 3-space)
Σ′ with mutually orthogonal straight line dimensions, x1′, x2′ and x3′, lie along the horizontal as a
hyper-surface and another Euclidean 3-space Σ0′ with mutually orthogonal straight line dimensions,
x01′, x02′ and x03′, lie along the vertical as a hyper-surface, as illustrated in Fig. 1.

0

S

S

Fig. 1. Co-existing two orthogonal Euclidean 3-spaces (considered as hyper-surfaces)

The Euclidean 3-space Σ0′ shall be described as ‘orthogonal’ to the Euclidean 3-space Σ′. The
union of the two ‘orthogonal’ Euclidean 3-spaces yields a compound six-dimensional Euclidean space
(Σ0′,Σ′) with mutually orthogonal straight line dimensions, x01′, x02′, x03′, x1′, x2′ and x3′. The
mutual orthogonality of the six dimensions of the two ‘orthogonal’ Euclidean 3-spaces is provided
by the requirement that each dimension x0j′ of Σ0′; j = 1, 2, 3, is orthogonal to every dimension
xi′; i = 1, 2, 3 of Σ′. Or x0j′ ⊥ xi′; i, j = 1, 2, 3, at every point of the Euclidean 6-space generated.

Now, corresponding to the x′y′− plane of the horizontal Euclidean 3-space Σ′ in Fig. 1 is the
x0′y0′−plane of the vertical Euclidean 3-space Σ0′. The dimensions, x0′ and y0′, of the x0′y0′−plane
of Σ0′are both perpendicular to each of the dimensions, x′ and y′, of Σ′, from the condition of the
mutual orthogonality of the dimensions of the compound Euclidean 6-spaces above. Hence x0′ and
y0′ are effectively parallel dimensions, which are normal to the x′y′−plane of Σ′, with respect to
observers in Σ′. (Note that the possibility of either dimension x0′ or y0′ lying along the dimension
z′ of Σ′ is ruled out by the condition of the orthogonality of the Euclidean spaces.) This is stated
symbolically as

x0′ ⊥ x′ and y0′ ⊥ x′ ; x0′ ⊥ y′ and y0′ ⊥ y′ ⇒ x0′||y0′ . (1)
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Likewise, corresponding to the x′z′−plane of Σ′

is the x0′z0′−plane of Σ0′. Again the dimensions,
x0′ and z0′, of the x0′z0′−plane of Σ0′ are both
perpendicular to each of the dimensions, x′ and
z′, of the x′z′−plane of Σ′. Hence x0′ and y0′ are
effectively parallel dimensions, which are normal
to the x′z′−plane of Σ′, with respect to observers
in Σ′. That is,

x
0′ ⊥ x

′
and z

0′ ⊥ x
′
; x

0′ ⊥ z
′
and z

0′ ⊥ z
′ ⇒ x

0′||z0′ .
(2)

Finally, corresponding to the y′z′−plane of Σ′ is
the y0′z0′−plane of Σ0′. Again the dimensions,
y0′ and z0′, of the x0′z0′−plane of Σ0′are both
perpendicular to each of the dimensions, y′ and
z′, of the y′z′− plane of Σ′. Hence y0′ and z0′ are
effectively parallel dimensions, which are normal
to the y′z′−plane of Σ′, with respect to observers
in Σ′. That is,

y
0′ ⊥ y

′
and z

0′ ⊥ y
′
; y

0′ ⊥ z
′
and z

0′ ⊥ z
′ ⇒ y

0′||z0′ .
(3)

The combination of statements (1), (2) and (3)
gives x0′||y0′||z0′ with respect to observers in
Σ′. This says that the mutually perpendicular
dimensions, x0′, y0′ and z0′, of the vertical
Euclidean 3-space Σ0′, with respect to observers
in Σ0′, are parallel dimensions with respect to
observers in the horizontal Euclidean 3-space Σ′

in Fig. 1.

The parallel dimensions, x0′, y0′ and z0′,
constituted by the Euclidean 3-space Σ0′ with
respect to observers in Σ′, are collinear along
a singular fourth dimension to the Euclidean
3-space Σ′. They thereby constitute a one-
dimensional space along the fourth dimensions
to the 3-space Σ′, to be denoted by ρ0′, with
respect to observers in Σ′.

Conversely, the mutually perpendicular
dimensions, x′, y′ and z′, of Σ′, with respect
to observers in Σ′, are parallel dimensions with
respect to observers in Σ0′. They are collinear
along the fourth dimension to the Euclidean
3-space Σ0′ and thereby constitute a one-
dimensional space along the fourth dimensions
to the 3-space Σ0′, to be denoted by ρ′, with
respect to observers in Σ0′.

Thus Fig. 1 naturally transforms into the flat
four-dimensional space (ρ0′,Σ′) with respect
to observers in Σ′, depicted in Fig. 2a and to
the flat four-dimensional space (ρ′,Σ0′) with
respect to observers in Σ0′, depicted in Fig. 2b.
Representations of the Euclidean 3-spaces
Σ′ and Σ0′ (considered as hyper-surfaces) by
plane surfaces in Fig. 1, have been changed
to representations by lines in Figs. 2a and 2b.
This is in line with the practice in the Minkowski
diagrams, as shall become obvious in the next
diagrams.

P

P
a(

(

b(

(

3

30

S

S

Fig. 2. The vertical and horizontal Euclidean 3-spaces in Fig. 1 are one-dimensional spaces
relative to 3-observers in the horizontal Euclidean 3-space and 3-observers in the vertical

Euclidean 3-space respectively

The one-dimensional space ρ0′ in Fig. 2a has no unique orientation in the Euclidean 3-space Σ0′

that contracts to it. It therefore has no unique unit vector (or basis) in Σ0′. It is consequently a scalar
one-dimensional space. The one-dimensional space ρ′ in Fig. 2b is likewise a scalar one-dimensional
space.

Point P in Fig. 2a possesses coordinate (x0′, x1′, x2′, x3′); x0′ being the coordinate along the one-
dimensional scalar space ρ0′. The corresponding point P0 in Fig. 2b possesses coordinate
(x′, x01′, x02′, x03′); x′ being the coordinate along the one-dimensional scalar space ρ′.
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Now x0 in the familiar spacetime coordinate notation (x0′, x1′, x2′, x3′) in the theories of relativity in
Fig. 2a is the time coordinate, that is, x0′ = ct′, as known. This means that the scalar one-dimensional
space ρ0′ is the time-dimension ct′ relative to observers in the Euclidean 3-space Σ′. The x′ in the
corresponding coordinate notation (x′, x01′, x02′, x03′) in Fig. 2b is likewise time coordinate, that is,
x′ = ct0′, relative to observers in the Euclidean 3-space Σ0′. Thus the one-dimensional scalar spaces,
ρ0′ and ρ′, shall be replaced with the time dimensions ct′ and ct0′ respectively in Figs. 2a and 2b to
have the final Figs. 3a and 3b.

3

30

0

P

P
a(

(

b(

(

ct

ctS

S

Fig. 3. (a) The scalar one dimensional spaces along the fourth dimensions along the vertical
in Fig. 2a and along the horizontal in Fig. 2b are time dimensions relative to the 3-observers

in the respective 3-spaces

The flat four-dimensional spacetime in Fig. 3a is our Minkowdki space, as known. Our vast universe
is located in this flat spacetime (from the point of view of the special theory of relativity). The flat four-
dimensional spacetime in Fig. 3b is the Minkowski space of another universe. The other universe
cannot be perceived better than the time dimension ct′ of our universe by observers in the three-
dimensional Euclidean space Σ′ of our universe, as shall be elucidated further later in this paper. It
shall be referred to as time-universe in this paper. The curved spacetime of GR is possible within the
time-universe as well, like within our universe.

The arbitrary origins in Figs. 3a and 3b are
not separated unlike as illustrated. The
corresponding points P and P0 and every other
pair of corresponding points in spacetimes of the
two universes, which can be arbitrary origins as
well, are not separated. Corresponding points
do not touch, because they exist in different
spacetimes. The issues of non-separation and
the non-touching of corresponding points in the
two spacetimes shall be further elucidated and
made more convincing later in this article.

2.1 Incorporating the Concepts
of Static Geodetic Flow
Speed and Static Time
Dimension

An implication of the natural contraction of
the three mutually perpendicular dimensions,
x01′, x02′ and x03′, of the vertical proper
Euclidean 3-space Σ0′ of the time-universe in Fig.
1, to a one-dimensional scalar space ρ0′ relative
to 3-observers in the horizontal proper Euclidean

3-space Σ′ of our universe in Fig. 2a is that, a
three-dimensional particle or object of rest mass
m0

0 in Σ0′, with respect to a 3-observer in Σ0′, is
naturally contracted to a one-dimensional particle
or object of equal rest mass m0

0 in the one-
dimensional scalar proper space ρ0′, relative to
the 3-observer in our Euclidean 3-space Σ′. This
is then further transformed to a one dimensional
particle or object of eqtal rest mass m0

0 in the
time dimension ct′ of our universe relative to
these observers, as a consequence of the natural
transformation of Fig. 2a to Fig. 3a relative to 3-
observers in Σ′.

Now the one-dimensional scalar proper space
ρ0′ is an isotropic dimension (with no unique
orientation) in the proper Euclidean 3-space Σ0′

that contracts to it. An implication of this fact
is that, in deriving the contraction of a three-
dimensional object of rest mass m0

0 of any shape
in Σ0′, to a one-dimensional object in ρ0′, relative
to the 3-observer in Σ′, the object must be
replaced with an equivalent spherical object of
equal rest mass m0

0 and equal volume (with a
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radius r0′) in Σ0′. It must then be allowed to
contract to a one-dimensional object of equal rest
mass m0

0 and a unique length r0′ along ρ0′, which
further transforms to one-dimensional object of
equal rest massm0

0 and length c∆t′ (= r0′) of the
proper time dimension ct′ of our universe, relative
to the 3-observers in the proper Euclidean 3-
space Σ′of our universe.

For example, a box of rest mass m0
0 and

dimensions ∆x0′, ∆y0′ and ∆z0′ in Σ0′, must
be replaced with an equivalent spherical box
of equal rest mass m0

0 and radius, r0′ =
(3∆x0′∆y0′∆z0′/4π)1/3, in Σ0′. This must then
be allowed to contract to a one-dimensional box
of equal rest mass m0

0 and length c∆t′ (= r0′)
of the time dimension ct′, relative to 3-observers
in Σ′. An object of irregular shape of rest mass
m0

0 and volume V 0′ in Σ0′, must be replaced with
an equivalent spherical object of equal rest mass
and equal volume in Σ0′.

The one-dimensional scalar proper space ρ0′

is the natural geodesic of the four dimensions
x1′, x2′, x3′ and ρ0′, just as the time dimension
ct′ is the natural geodesic of the four dimensions
x1′, x2′, x3′ and ct′, as known. Every point
along ρ0′ possesses speed c of static geodetic
flow along its positive axis, relative to all 3-
observers in Σ′, where “static geodetic flow”
means not made manifested in detectable (or
actual) geodetic flow. The geodetic flow of ρ0′

is certainly static (or not actual), because ρ0′ is
a space dimension like x1′, x2′ and x3′ of Σ′.
Moreover the vertical Euclidean 3-space Σ0′ (that
contracts to ρ0′) is not propagating (or flowing)
relative to the horizontal Euclidean 3-space Σ′ in
Fig. 1 we started with.

The speed c of static geodetic flow of every
point along ρ0′ appears at every point along the
proper time dimension ct′, and it is the same
speed c (not made manifest in geodetic flow) that
appears in the notation ct′ of the time dimension
in Fig. 3a. Thus the proper time dimension ct′

to which the vertical proper Euclidean 3- space
Σ0′ in Fig. 1 transforms, as derived earlier in this
section, possesses speed c of static geodetic flow
at every point along its length, but which is not
made manifested in actual geodetic flow of ct′.
The ct′ is therefore to be referred to as static (i.e.
non-flowing) time dimension.

It is appropriate to differentiate the static geodetic
flow speed from the speed of light c, which
material particles and bodies cannot attain in
relative motion. Thus let us denote the static
geodetic flow speed by cs (with subscript “s”
denoting static), while the speed of light shall
remain as c. (It is the non-attainable speed of light
c by material particles that appears in the factor γ
as, γ = (1− v2/c2)−1/2, in SR and not the static
geodetic flow speed cs.) The proper static time
dimension shall be re-denoted by cst′, since it is
the static geodetic flow speed cs of every point
along its length that appears in its notation, as
mentioned in the preceding paragraph.

The proper static time dimension cst
′ is the

usual proper time dimension denoted by ct′ (and
sometimes by cτ ). The need for qualification by
static is to give room for the possibility of non-
static time dimension with natural geodetic flow.
Nevertheless the static qualification shall often be
omitted for brevity, while the notation cst′ shall be
sticked to henceforth in this paper.

The rest mass m0
0 of an object located at any

point along ρ0′ acquires the speed cs of the static
geodetic flow of that point. This is not made
manifested in translation of m0

0 at speed cs along
ρ0′, since the geodetic flow of ρ0′ at speed cs
is a static (or non-actual) flow. The rest mass
m0

0 of an object at rest at its position along ρ0′

relative to the 3-observers in Σ′, possesses non-
detectable rest energy m0c2s naturally. It is non-
detectable since the static geodetic flow speed
cs is not a detectable speed. Thus m0

0 that
possesses only the static geodetic speed cs in
ρ0′ must be considered as a state of rest energy
E0′ (= m0

0c
2
s), instead of a state of rest mass m0

0

at its position along ρ0′, relative to 3-observers in
Σ′.

When the scalar one-dimensional proper space
ρ0′ transforms into the proper static time
dimension cst

′, as happens between Fig. 2a
and Fig. 3a, the rest energy E0′ (= m0

0c
2
s) at

a point along ρ0′, transforms into rest energy
E′ (= m0c

2
s) at the corresponding point along

cst
′, relative to 3-observers in Σ′. Note that the

notations for rest energy E′ and rest mass m0

(without superscript “0”) in our universe, appear
in E′ (= m0c

2
s) along our time dimension cst′.
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Thus in writing the ‘four-dimensional’ rest mass of
a particle or object in the four-dimensional proper
spacetime (cst

′,Σ′) (or (cst
′, x1′, x2′, x3′)), we

must, for dimensional consistency, divide the rest
energy E′ (= m0c

2
s) of the particle or object

along cst
′ by c2s to have one-dimensional rest

mass E′/c2s (= m0) of the particle or object
in ct′ and add this to its three-dimensional
rest mass m0 in the proper Euclidean 3-space
Σ′ to obtain the four-dimensional rest mass
(E′/c2s,m0) of the particle or object in (cst

′,Σ′)
(or (cst′, x1′, x2′, x3′)).

Since the speed cs in the non-detectable rest
energy E′ (= m0c

2
s) of a particle or object in

the time dimension cst
′ is not made manifested

in translation at speed cs along cst
′, E′ is

not an immaterial energy with zero material
attribute. Rather the one-dimensional rest mass
E′/c2s of a particle or object in cst

′ retains the
material attributes of the rest mass m0 in Σ′.
It can therefore appear in the special theory

of relativity and relativistic mechanics at equal
footing with the three-dimensional rest mass m0

of the particle or object in Σ′. It is for this reason
that E′/c2s in cst′ shall be referred to as rest mass
on equal footing with m0 in Σ′.

The terms, “three-dimensional mass”, “four-
dimensional mass” and “one-dimensional mass”,
shall be used freely in this paper to mean
mass in three-dimensional space, mass in
four-dimensional spacetime and mass in time
dimension respectively.

Illustrated in Fig. 4a are the three-dimensional
rest mass m0 of a particle or object at a point of
straight line distance d′ from a point of reference
or origin in our proper Euclidean 3-space Σ′

and the symmetry-partner one-dimensional mass
E′/c2s at the symmetry-partner point of distance
d0′ along our proper static time dimension cst

′

from the point of reference or origin, where the
distances d′ and d0′ are equal.

Fig. 4. The three-dimensional rest mass of an object at a position in the proper Euclidean
3-space and its one-dimensional rest mass at the symmetry-partner position in the proper
time dimension in the situations where, (a) the object is stationary relative to the observer

and (b) the object is in motion relative to the observer

Fig. 4a pertains to a situation where the three-dimensional rest mass m0 of the particle or object
is at rest relative to the 3-observer in the proper Euclidean 3-space Σ′ and, consequently, its one-
dimensional rest mass E′/c2s is at rest in the proper time dimension cst′ relative to the 3-observer in
Σ′. On the other hand, Fig. 4b pertains to a situation where the three-dimensional rest massm0 of the
particle or object is in motion at a velocity v⃗ relative to this observer, thereby becoming the special-
relativistic three-dimensional mass γm0 in Σ′, relative to this 3-observer in Σ′ and, consequently, the
one- dimensional rest mass E′/c2s of the particle or object is in motion at speed, v = | v⃗ |, along the
proper time dimension cst′, thereby becoming the special-relativistic one-dimensional mass γE′/c2s
in cst′, relative to the 3- observer in Σ′.
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The one-dimensional rest mass E′/c2s of length
cs∆t

′ (= r0′), located at rest at a point in
the time dimension cst

′ in Fig. 4a, acquires
the speed cs of static (or non-actual) geodetic
flow of cst′, which is not made manifested in
translation of E′/c2s along cst′ with respect to the
3-observer in Σ′, as mentioned earlier. Moreover
E′/c2s possesses zero speed, (v = 0), of
motion along cst

′ relative to the 3-observer in
Σ′, just as the three-dimensional rest mass m0

possesses zero speed of motion in the Euclidean
3-space Σ′ relative to the 3-observer in Σ′.
Consequently m0 and E′/c2s remain stationary at
their symmetry-partner locations in Σ′ and cst

′

respectively, relative to the 3-observer in Σ′, as
being assumed in Fig. 4a.

In a situation where the three-dimensional rest
mass m0 of the particle or object is in motion
at a velocity v⃗ in the Euclidean 3-space Σ′ and
its one-dimensional rest mass E′/c2s is in motion
at speed, v = | v⃗ |, along the time dimension,
relative to the 3-observer in Σ′ in Fig. 4b,
on the other hand, the special-relativistic one-
dimensional mass γE′/c2s, acquires the speed cs
of static geodetic flow of the time dimension cst′,
which is not made manifested in translation of
γE′/c2s along cst′, and as well possesses speed v
of translation along cst′, relative to the 3-observer
in Σ′. In composing the resultant of speeds cs
and v that must appear in SR relative to the
observer, the speed cs must be set to zero.

Now during a given period of time, the special-
relativistic one-dimensional mass γE′/c2s has
translated at constant speed v from an initial
position P0

1 to another position P0
2 along the time

dimension cst
′, while covering an interval P0

1P0
2

of cst′. During the same period of time, the
special-relativistic three-dimensional mass γm0,
has translated at equal constant speed v = | v⃗ |
from an initial position P1 to another position
P2 in the Euclidean 3-space Σ′, while covering
a straight line distance P1P2 in Σ′, where the
interval P0

1P0
2 covered along cst

′ by γE′/c2s is
equal to the straight line distance P1P2 covered
in Σ′ by γm0, and the positions P1 and P2 in Σ′

are symmetry-partner positions to the positions
P0

1 and P0
2 respectively along cst′. Consequently

γm0 and γE′/c2s are always located at symmetry-
partner positions in Σ′ and cst

′ in the situation
where they are in motion at any speed v in their

respective domains, relative to the 3-observer in
Σ′ in Fig. 4b.

It shall be reiterated for the sake of emphasis
that the one-dimensional rest mass E′/c2s or
special-relativistic mass γE′/c2s in our proper
time dimension cst′, with respect to 3-observers
in our proper Euclidean 3-space Σ′, of a particle,
object or observer in Figs. 4a and 4b, is actually
the three-dimensional rest mass m0

0 or three-
dimensional special-relativistic mass γm0

0 of the
identical symmetry-partner particle, object or
observer in the Euclidean 3-space Σ0′ of the
time-universe, with respect to 3-observers in Σ0′.
This is the origin of the one-dimensional particles,
objects and observers (or 1-particles, 1-objects
and 1-observers) in the time dimension to the
3-dimensional particles, objects and observers
(or 3-particles, 3-objects and 3-observers) in
3-space and, consequently, the origin of 4-
particles, 4-objects and 4-observers in spacetime
in our universe.

The equality of rest masses, m0 and m0
0,

of symmetry-partner particles or bodies in our
universe and the time-universe follows from the
equality E′/c2s = E0′/c2s, as E0′/c2s along the
one-dimensional scalar space ρ0′ (not shown)
in Fig. 2a, transforms into E′/c2s along the time
dimension cst

′ (not shown) in Fig. 3a, alongside
the equalities, E′/c2s = m0 and E0′/c2s = m0

0.
This shall be elaborated further elsewhere.

The motion at speed v along the proper time
dimension cst′ of the one-dimensional rest mass
E′/c2s of a particle or object, relative to the 3-
observer in the Euclidean 3-space Σ′ of our
universe in Fig. 4b, is actually the motion at
velocity v⃗ of the three-dimensional rest mass
m0

0 of the identical symmetry-partner particle
or object in the Euclidean 3-space Σ0′ of the
time-universe, relative to the identical symmetry-
partner 3-observer in Σ0′ in that universe.
Thus the three-dimensional rest mass m0 of
a particle or object in our universe and the
three-dimensional rest mass m0

0 of the identical
symmetry-partner particle or object in the time-
universe, are involved in simultaneous identical
relative motions always in their respective
universes. This also shall be elaborated
elsewhere.
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It shall be concluded from the discussions to
the preceding two paragraphs that our universe
and the time-universe are identically populated
by symmetry-partner moons, planets (including
the earths and objects on earth), stars (including
the Suns), galaxies, clusters of galaxies and
freely floating objects in space. A body in our
universe and its symmetry-partner in the time-
universe have identical magnitudes of masses.
They are in identical relative motions relative to
identical symmetry-partner observers or frames
of reference, within symmetry-partner regions of
spacetimes in the two universes at all times.
These issues shall be elaborated elsewhere. The
identical sizes and shapes, or otherwise, of the
rest masses m0 and m0

0 of symmetry-partner
particles and objects in our universe and the time-
universe shall be investigated elsewhere.

2.2 Origin of Four-Vectors on
Flat Spacetime in our
Universe

Now every parameter in the Euclidean 3-space
has its counterpart (or symmetry-partner) in the
time dimension. We have seen the case of the
three-dimensional rest mass m0 in the proper
Euclidean 3-space Σ′ and its symmetry-partner
one-dimensional rest mass E′/c2s in the proper
time dimension cst′, as developed in this section
and illustrated in Figs. 4a and 4b.

A three-vector quantity R⃗ in the Euclidean
3-space Σ′ has its symmetry-partner scalar
quantity R0 in the scalar static time dimension
cst

′. The composition of the two yields four-
vector quantity Rλ = (R0, R⃗) (or Rλ =
(R0, R1, R2, R3)). We now know that the scalar
componentsR0 in the time dimension cst′ of four-
vector quantities in our universe, are themselves
three-vector quantities R⃗0 in the Euclidean 3-
space Σ0′ of the time-universe, with respect to 3-
observers in Σ0′. The three-vector quantities R⃗0

in Σ0′ (which are identical symmetry-partners to
the three-vector quantities R⃗ in our Euclidean 3-
space Σ′, become contracted to one-dimensional
scalar quantities, R0 = |R⃗0|, in the time
dimension cst

′, relative to 3-observers in Σ′,
even as the Euclidean 3-space Σ0′ containing R⃗0

becomes contracted to the scalar time dimension
cst

′ relative to 3-observers in Σ′.

The appropriate notation for the scalar
component R0 in cst

′ of every three-vector R⃗
in Σ′ must be determined. For instance, R0 is
the static geodetic flow speed cs in cst

′ and R⃗
is the velocity v⃗ in Σ′, in the case of velocity
four-vector; R0 = m0cs and R⃗ = m0v⃗, in the
case of momentum four-vector; and R0 = cst

′

and R⃗ = r⃗, where r⃗ is coordinate vector in Σ′, in
the case of coordinate four-vector.

What can be concluded from the above is that,
particles and bodies and four-vectors, including
velocity four-vector (or motions of material
particles and bodies), are symmetrically located
in our universe and the time-universe. More
formal evidences for the symmetrical distribution
of material particles and bodies and of the
symmetry of their motions between the two
universes shall emerge with further development
of this paper and elsewhere. The coexistence
of our universe and the time-universe shall be
concluded from the derivations up to this point in
this paper.

3 POSITIVE TIME-UNIVERSE
AND NEGATIVE TIME-
UNIVERSE

A veritable conclusion of two previous papers
[1, 2] is that universes come in symmetrical pairs
(a positive universe and a negative counterpart).
There are two symmetrical time-universes, to be
referred to as positive time-universe and negative
time-universe. The derived time-universe up
to the end of the preceding section, with its
spacetime illustrated in Fig. 3b, is the positive
time-universe.

In Fig. 5a is re-illustrated the combined flat
spacetimes of our (or positive) universe and the
negative universe (presented as Fig. 5 of [1]),
while the combined flat spacetimes of the positive
time-universe and the negative time-universe is
illustrated in Fig. 5b.

There are four symmetrical universes in Figs. 5a
and 5b namely, our (or positive) universe and
negative universe (in Fig. 5a) and the positive
time-universe and negative time-universe (in
Fig. 5b).
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Fig. 5. Combined spacetimes of (a) our (or positive) universe and negative universe and (b)
positive time-universe and negative-time universe

Figs 5a and 5b are actually not separated unlike as shown. Rather they must be brought together
as Fig. 6a with respect to 3-observers in the Euclidean 3-spaces Σ′ and −Σ′∗ of our universe and
the negative universe and as Fig.6b with respect to 3-observers0 in the Euclidean 3-spaces Σ0′ and
−Σ0′∗ of the positive time-universe and the negative time-universe.

Fig. 6. Combined spacetimes of four symmetrical universes (a) with respect to 3-observers in
the Euclidean 3-spaces of our universe and negative universe and (b) with respect to
3-observers0 in the Euclidean 3-spaces of the positive time-universe and the negative

time-universe

It is to be observed, as demonstrated earlier in this article that, the flat four-dimensional spacetimes
(Σ0′, cst

0′) and (−Σ0′∗,−cst0′∗) of the positive time-universe and the negative time-universe, with
respect to 3-observers0 in the Euclidean 3-spaces Σ0′ and −Σ0′∗ of those universes in Figs. 5b,
naturally contract to flat two-dimensional spacetimes (ρ0′, cst

0′) and (−ρ0′∗,−cst0′∗) with respect to
3-observers in the Euclidean 3-spaces Σ′ and −Σ′∗ of our universe and negative universe in Fig. 6a.
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Likewise, the flat four-dimensional spacetimes
(Σ′, cst

′) and (−Σ′∗,−cst′∗) of our (or positive)
universe and the negative universe, with respect
to 3-observers in the Euclidean 3-spaces
Σ′ and −Σ′∗ of our universe and negative
universe in Figs. 5a, are naturally contracted to
flat two-dimensional spacetimes, (ρ′, cst

′) and
(−ρ′∗,−cst′∗), with respect to 3-observers0 in the
Euclidean 3-spaces Σ0′ and Σ0′∗ of the positive
time-universe and the negative time-universe in
Fig. 6b. This, again, follows from the explained
contraction of Σ′ to ρ′ between Fig. 1 and Fig. 2b,
with respect to 3-observers in Σ0′ derived early
in the preceding section.

As mentioned earlier and illustrated between
Figs. 2a and 3a, the one-dimensional positive
scalar space ρ0′ in Fig. 6a (to which the Euclidean
3-space Σ0′ of the positive time-universe,
contracts relative to 3-observers in our Euclidean
3-space Σ′), further transforms into the positive
static time dimension cst′ of our universe relative
to 3-observers in Σ′ in that diagram. The one-
dimensional negative scalar space −ρ0′∗ (to
which the Euclidean 3-space Σ0′∗ of the negative
time-universe, contracts relative to 3-observers in
−Σ′∗ of the negative universe in Fig. 6a), likewise
further transforms into the negative static time
dimension cst′∗ of the negative universe, relative
to 3-observers in −Σ′∗.

Although Fig. 6a exists in nature, the 3-observers
in the Euclidean 3-space Σ′ of our universe
can perceive the flat four-dimensional spacetime
(Σ′, cst

′) of our universe only; the flat two-
dimensional spacetime (ρ0′, cst

0′) to which the
flat four-dimensional spacetime (Σ0′, cst

0′) of the
positive time-universe contracts with respect to
these 3-observers in Σ′, being completely hidden
to them, just as (Σ0′, cst

0′) is hidden to them.

Likewise, the 3-observers in the Euclidean
3-space −Σ′∗ of the negative universe can
perceive the flat four-dimensional spacetime
(−Σ′∗,−cst′∗) of the negative universe only
in Fig. 6a, the flat two-dimensional spacetime
(−ρ0′∗,−cst0′∗) to which the flat four-dimensional
spacetime (−Σ0′∗,−cst0′∗) of the negative time-
universe contracts relative to 3-observers in −Σ′∗

of the negative universe, being completely hidden
to these 3-observers, just as (−Σ0′∗,−cst0′∗) is
hidden to them.

In symmetry, although Fig. 6b exists in nature,
the 3-observers0 in the Euclidean 3-space Σ0′

of the positive time-universe can perceive the
flat four-dimensional spacetime (Σ0′, cst

0′) of
the positive time-universe only; the flat two-
dimensional spacetime (ρ′, cst

′) to which the flat
four-dimensional spacetime (Σ′, cst

′) of our (or
positive) universe contracts with respect to these
3-observers0 in Σ0′, being completely hidden to
them, just as (Σ′, cst

′) is hidden to them.

Likewise, the 3-observers0 in the Euclidean 3-
space −Σ0′∗ of the negative time-universe can
perceive the flat four-dimensional spacetime
(−Σ0′∗,−cst0′∗) of the negative time-universe
only in Fig. 6b; the flat two-dimensional
spacetime (−ρ′∗,−cst′∗) to which the flat
four-dimensional spacetime (−Σ′∗,−cst′∗) of
the negative universe contracts relative to 3-
observers0∗ in −Σ0′∗ of the negative time-
universe, being completely hidden to these 3-
observers0∗, just as (−Σ′∗,−cst′∗) is hidden to
them.

3.1 Origin of the Two-dimensional
Intrinsic Spacetime Containing
Two-dimensional Intrinsic
Masses of Particles and
Bodies

It is to be recalled that the two-dimensional
proper intrinsic metric spacetime denoted by
(∅ρ′,∅cs∅t′) that underlies (or embeds) the
flat four-dimensional proper metric spacetime
(Σ′, cst

′) of our (or positive) universe and
(−∅ρ′∗,∅cs∅t∗) that underlies (or embeds) the
flat four-dimensional proper metric spacetime
(−Σ′∗,−cst′∗) of the negative universe, are
introduced without deriving them (or as ansatz)
in the two-world picture in sub-section 4.3 of
[1]. Their introduction has proved profitable
and, indeed, unavoidable in the subsequent
developments in both [1] and [2]. The origins of
intrinsic spacetimes in our (or positive) universe
and negative universe, as well as positive time-
universe and negative time-universe, and the
origins of the intrinsic rest masses contained in
them, shall be derived within the larger four-world
picture in this sub-section.

Although the two-dimensional spacetime
(ρ0′, cst

0′) to which the four-dimensional
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spacetime (Σ0′, cst
0′) of the positive time-

universe contracts with respect to 3-observers
in the Euclidean 3-space Σ′ of our universe in
Fig. 6a, is hidden to these 3-observers in Σ′,
as mentioned above, Fig. 6a exists in nature
and the straight line one-dimensional scalar
space ρ0′ of the positive time-universe along
the vertical has a projection—a ‘shadow’—in our
Euclidean 3-space Σ′ (as a hyper-surface) along
the horizontal in Fig. 6a. The one-dimensional
rest masses m0

0 in ρ0′ (to which the three-
dimensional rest masses m0

0 of particles and
bodies in the Euclidean 3-space Σ0′ contract,
as Σ0′ contracts to ρ0′ relative to 3-observers
in Σ′), likewise ‘casts a shadow’ in our three-
dimensional Euclidean space Σ′ in Fig. 6a. The
‘shadows’ of spacetime and masses are derived
below.

3.1.1 Origins of the Two-dimensional
Intrinsic Spacetimes in the
Four Universes

Let us for the purpose of the derivations to be
done hereunder, consider just the first quadrants
of Fig. 6a and and 6b and present them as
Figs. 7a and 7b. Now the one-dimensional scalar
proper metric space ρ0′ is naturally inclined at
zero angle, ψ0 = 0, to the vertical, or at an angle,
η0 = π/2, to the proper Euclidean 3-space Σ′

of our universe, considered as a hyper-surface
(represented by a line — a ‘hyper-line’), along
the horizontal in Fig. 7a. Although ρ0′ is hidden
to the 3-observers in Σ′, however since it exists
along the vertical, it projects a component—
a ‘shadow’—into Σ′ along the horizontal, as
mentioned above.

3-observers

S

S

r

r0

0

0

0

3-observers0

cst
cst

cst

cst
(a) (b)

Fig. 7. The four-dimensional proper metric spacetimes of our (or positive) universe and the
positive time-universe with respect to: (a) 3-observers in the proper Euclidean 3-space of our
universe and (b) 3-observers0 in the proper Euclidean 3-space of the positive time-universe

Let us start by artificially considering ρ0′ to be inclined clockwise by a non-zero angle ψ0 to the
vertical, or anti-clockwise by angle, η0 = π/2 − ψ0, to the horizontal in Fig. 7a. The projection of ρ0′

into Σ′ along the horizontal in its artificially inclined position, to be denoted by ρ0′h , is

ρ0′h = ρ0′ cos η0 . (1)

One important result of the reformulation SR on a two-world background in [1] is the fact that the
“hyperbolic projections” of spacetime coordinates (in terms of coshα and sinhα), on the flat four-
dimensional spacetime hyperplane, in the Minkowski geometry in the one-world background of SR,
is replaced by their trigonometric counterparts (in terms of cosψ and sinψ) in the context of the two-
world background of SR in that article. This leads to length contraction in the form, l = l′ cosψ; cosψ =
(1−v2/c2)1/2, for instance. The trigonometric projection of coordinates on spacetime hyperplane idea
is applied in Eq. (1).

Now the extended straight line dimension ρ0′ is naturally inclined at an angle, η0 = π/2, relative to
the horizontal in Fig. 7a, not in the context of SR, but due to the fact that ρ0′ possesses the maximum
static geodetic flow speed, V0 = cs, at every point along its length. In the artificially inclined condition
of ρ0′ for which Eq. (1) is written, V0 has a constant value that is smaller than cs at every point along
the inclined ρ0′. Unlike the relative speed v of SR, which varies with observer or frame of reference,
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the static geodetic flow speed V0 is the same relative to all observers or frames of reference. Hence
V0 is an absolute speed. Since ρ0′ is naturally along the vertical, the angle η0 shall be set to π/2 in
Eq. (1) giving

ρ0′h = ρ0′ cos η0 = ρ0′ cos
π

2
= 0 . (2)

Equation (2) states that the scalar one-
dimensional proper metric space ρ0′ along the
vertical, projects zero component (or nothing)
into the proper Euclidean 3-space Σ′ (as a
hyper-surface) along the horizontal. However
we shall not ascribe absolute nothingness to the
projection of the one-dimensional proper metric
space ρ0′ along the vertical into the Euclidean 3-
space Σ′ along the horizontal in Fig. 7a. The one-
dimensional space ρ0′ certainly ‘casts a shadow’
in Σ′, as mentioned earlier.

Actually, it is the factor cosπ/2 that vanishes in
Eq. (2) and not ρ0′ multiplying it. Thus let us
re-write Eq. (2) as

ρ0′h = ρ0′ cos
π

2
= 0× ρ0′ ≡ ∅ρ′ , (3)

where the projective ∅ρ′ is without the dummy
superscript “0” label used to differentiate the
coordinates and parameters of the positive time-
universe from those of our universe, because it
lies (or is embedded) in our Euclidean 3-space
Σ′ along the horizontal, thereby being an entity
of our universe (without superscript “0” label).

Thus instead of associating absolute nothingness
to the projection of ρ0′ that lies along the
vertical into the Euclidean 3-space Σ′ as a hyper-
surface along the horizontal, as done in Eq. (2), a
dimension denoted by ∅ρ′ has been associated
with it in Eq. (3). Any interval of the ∅ρ′ is
equivalent to zero interval of the one-dimensional
scalar space ρ0′ that projects it, as follows from,
∅ρ′ ≡ 0 × ρ0′, in Eq. (3). It then follows that any
interval of ∅ρ′ is equivalent to zero interval of the
proper Euclidean 3-space Σ′ it underlies (or in
which it is embedded). Or any interval of ∅ρ′ is
no interval of space Σ′. The name nospace shall
be coined for ∅ρ′ from the preceding statement,
where ∅ρ′ is the proper (or classical) nospace
by virtue of the prime label on it. Nospace is
non-observable and non-detectable to observers
in the metric space Σ′, since any interval of it is
zero interval of space.

An alternative name of intrinsic space shall be
given to nospace, where intrinsic means non-

observable and non-detectable to observers in
the metric space Σ′. The ∅ρ′ is the proper (or
classical) intrinsic space by virtue of the prime
label on it.

As mentioned in section 2 at the neighborhood
of Figs. 2a and 2b of this paper, the one-
dimensional proper metric space ρ0′ can be
considered to be along any direction of the
Euclidean 3-space Σ0′ of the positive time-
universe that contracts to it, with respect to 3-
observers in our Euclidean Σ′. Thus ρ0′ is an
isotropic scalar one-dimensional space with no
unique orientation (or basis) in the Euclidean
3-space Σ0′ that contracts to it. The one-
dimensional intrinsic space (or one-dimensional
nospace) ∅ρ′, which ρ0′ projects into our
Euclidean 3-space Σ′, is likewise an isotropic
scalar intrinsic space dimension with no unique
orientation in Σ′ with respect to 3-observers in
Σ′. An alternative conceptual explanation of the
isotropy of ∅ρ′ in Σ′ is given in paragraphs under
Figs. 6a and 6b of [1].

The proper metric static time dimension cst
0′ of

the positive time-universe is naturally along the
horizontal in Fig. 7a. Its projection into the static
proper metric time dimension cst′ of our universe
along the vertical, to be denoted by cst

0
v
′, is

likewise given like Eq. (2) as

cst
0′
v = cst

0′ cos
π

2
= 0 . (4)

Equation (4) states that the proper metric time
dimension cst0′ of the positive time-universe that
lies along the horizontal naturally, projects zero
component (or nothing) into the proper time
dimension cst′ of our universe along the vertical
in Fig. 7a. However we shall not ascribe absolute
nothingness to the projection of the proper metric
time dimension cst0′ along the horizontal into cst′

along the vertical. It certainly ‘casts a shadow’ in
cst

′.

Actually, it is the factor cosπ/2 that vanishes and
not cst0′ multiplying it in Eq. (4). Thus let us
rewrite Eq. (4) as

cst
0′
v = cst

0′ cos
π

2
= 0× cst

0′ ≡ ∅cs∅t′ , (5)
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where the projective ∅cs∅t′ is without the
superscript “0” label, because it lies (or is
embedded) in our proper time dimension cst

′,
thereby being an entity of our universe (without
superscript “0” label).

Thus instead of associating absolute nothingness
to the projection of cst

0′ that lies along the
horizontal into the proper time dimension cst

′

along the vertical, as done in Eq. (4), a dimension
∅cs∅t′ has been associated with it in Eq. (5).
Any interval of the one-dimensional ∅cs∅t′ is
equivalent to zero interval of the time dimension
cst

0′ that projects it, as follows from, ∅cs∅t′ ≡
0 × cst

0′, in Eq. (5). It then follows that any
interval of ∅cs∅t′ is equivalent to zero interval
of our proper time dimension cst

′ in which it
is embedded. Or any interval of ∅cs∅t′ is no
interval of time dimension. The name notime
dimension shall be coined for ∅cs∅t′ from the
preceding statement, where ∅cs∅t′ is the proper
(or classical) notime dimension by virtue of the
prime label on it. The notime dimension is non-
observable and non-detectable to 1-observers in
cst

′, since any interval of it is zero interval of time
dimension cst′.

An alternative name of intrinsic time dimension
shall be given to ∅cs∅t′, where intrinsic
means non-observable and non-detectable. The
∅cs∅t′ is the proper (or classical) intrinsic time
dimension by virtue of the prime label on it.

The projection of the proper intrinsic metric scalar
space ∅ρ′ into the metric Euclidean 3-space Σ′

of our universe by the one-dimensional scalar
proper metric space ρ0′ of the positive time-
universe in Fig. 7a, expressed by Eq. (3), and
the projection of the proper intrinsic metric static
time dimension ∅cs∅t′ into the proper metric
static time dimension cst

′ of our universe along
the vertical, by the proper metric static time
dimension cst

0′ of the positive time-universe
along the horizontal in Fig. 7a, expressed by
Eq. (5), are illustrated in Fig. 8a.

The derivations from Eq. (1) through Eq. (5) that
lead to Fig. 8a in our universe, have been
based on Fig. 7a. It is straight forward to do
the same derivations with Fig. 7b and arrive at
the corresponding Fig. 8b in the positive time-
universe.
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Fig. 8. (a) The flat two-dimensional proper metric spacetime of the positive time-universe
with respect to 3-observers in our proper Euclidean 3-space, projects two-dimensional

proper intrinsic metric spacetime into the flat four-dimensional proper metric spacetime of
our universe. (b) The flat two-dimensional proper metric spacetime of our universe with
respect to 3-observers0 in the proper Euclidean 3-space of the positive time-universe,

projects two-dimensional proper intrinsic metric spacetime into the flat four-dimensional
proper metric spacetime of the positive time-universe

Now the scalar proper space and the proper time dimension, ρ0′ and cst
0′, of the positive time-

universe in Fig. 8a, cannot appear in physics in our universe. Whereas the proper intrinsic space
and proper intrinsic time dimension, ∅ρ′ and ∅cs∅t′, which they project into the four-dimensional
proper spacetime of our universe can appear in intrinsic physics in our universe. Likewise the scalar
proper space and proper time dimension, ρ′ and cst′, of the our universe in Fig. 8b, cannot appear
in physics in the positive time-universe. Whereas the proper intrinsic space and proper intrinsic time
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dimension, ∅ρ0′ and ∅cs∅t0′, which they project into the four-dimensional proper metric spacetime
of the positive time-universe, can appear in intrinsic physics in the positive time-universe.

The dimensions, ρ0′ and cst
0′, shall be removed from Fig. 8a yielding the spacetime and intrinsic

spacetime of our universe, which shall be added to the symmetry-partner spacetime and intrinsic
spacetime of the negative universe to have Fig. 9a. The dimensions ρ′ and cst

′ shall likewise be
removed from Fig. 8b yielding the spacetime and intrinsic spacetime of the positive time-universe,
which shall be added to the symmetry-partner spacetime and intrinsic spacetime of the negative
time-universe to have Fig. 9b.
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Fig. 9. (a) Figure 8a with the one-dimensional proper scalar space and proper time dimension
of the positive time-universe removed, yielding the flat proper four-dimensional spacetime

and the underlying flat two-dimensional proper intrinsic spacetime of our universe combined
with those of the negative universe. (b) Figure 8b with the one-dimensional scalar proper

space and proper time dimension of our universe removed, yielding the flat four-dimensional
proper spacetime and the underlying flat two-dimensional proper intrinsic spacetime of the

positive time-universe combined with those of the negative time-universe

The singular isotropic proper intrinsic space (or
proper nospace) ∅ρ′ of our universe is effectively
orientated along all directions of the proper metric
Euclidean 3-space Σ′ of our universe in which it
is embedded and the singular isotropic proper
intrinsic space (or proper nospace) −∅ρ′∗ of
the negative universe is effectively orientated
along all directions of the proper Euclidean 3-
space −Σ′∗ of the negative universe in which it is
embedded in Fig. 9a.

The singular isotropic proper intrinsic space
(or proper nospace) ∅ρ0′ of the positive time-
universe is effectively orientated alone all
directions of the proper Euclidean 3-space Σ0′ of
the positive time-universe in which it is embedded
and the singular isotropic proper intrinsic space
(or proper nospace) −∅ρ0′∗ of the negative
time-universe is effectively orientated alone all

directions of the proper Euclidean 3-space Σ0′′∗

of the negative time-universe in which it is
embedded in Fig. 9b.

Figure 9a of our universe and the negative
universe is Fig. 7 of [1], introduced as ansatz
in the two-world picture of that paper, which has
now been derived within the larger four-world
picture. The counterpart Fig. 9b of the positive
time-universe and the negative time-universe is
new.

As is clear from the above, the flat two-
dimensional proper metric spacetime (ρ0′, cst

0′)
of the positive time-universe projects the flat two-
dimensional proper intrinsic metric spacetime
(∅ρ′,∅cs∅t ′) of our universe. However the
two-dimensional (ρ0′, cst

0′) with respect to 3-
observers in the proper Euclidean 3-space
Σ′ of our universe in Fig. 8a is the flat four-

24



Joseph; PSIJ, 24(12): 10-38, 2020; Article no.PSIJ.63757

dimensional proper metric spacetime (Σ0′, cst
0′)

of the positive time-universe, with respect to 3-
observers0 in Σ0′′ of that universe. It must thus
be said that the proper intrinsic metric spacetime
(∅ρ′,∅cs∅t ′) of our universe is the projection
(or ‘shadow’) of the four-dimensional proper
metric spacetime (Σ0′′, cst

0′) of the positive time-
universe. As the converse, the proper intrinsic
metric spacetime (∅ρ0′,∅cs∅t0′) of the positive
time-universe is the projection (or ‘shadow’) of
the four-dimensional proper metric spacetime
(Σ′, cst

′) of our universe.

It also follows that the proper intrinsic metric
spacetime (−∅ρ′∗,−∅cs∅t ′∗) of the negative
universe is the projection (or ‘shadow’) of
the four-dimensional proper metric spacetime
(−Σ0′∗,−cst0′∗) of the negative time-universe
and the proper intrinsic metric spacetime
(−∅ρ0′∗,−∅cs∅t0′∗) of the negative time-
universe is the projection (or ‘shadow’) of
the four-dimensional proper metric spacetime
(−Σ′∗,−cst′∗) of the negative universe.

3.1.2 Origin of Two-Dimensional
Intrinsic Rest Mass in the Two-
Dimensional Proper Intrinsic
Spacetime Underlying Four-
Dimensional Rest Mass in
the Four-Dimensional Proper
Spacetime

Let us locate the four-dimensional rest mass
(m0, ε

′/c2s) of a particle at a point on the flat four-
dimensional proper metric spacetime (Σ′, cst

′)
of our universe. The identical four-dimensional
rest mass (m0

0, ε
0′/c2s) of the symmetry-partner

particle in the positive time-universe will be
automatically located at the symmetry-partner
point on the flat four-dimensional proper metric
spacetime (Σ0′, cst

0′) of that universe. This
happens by virtue of the perfect symmetry of
state among the four universes, which shall be
prescribed at this point, but shall be established
elsewhere.

However the four-dimensional rest mass
(m0

0, ε
0′/c2s) in (Σ0′, cst

0′), with respect to
3-observers0 in the proper Euclidean 3-
space Σ0′ of the positive time-universe is
naturally contracted to two-dimensional rest

mass (m0
0, ε

0′/c2s) in two-dimensional proper
metric spacetime (ρ0′, cst

0′), with respect to 3-
observers in the proper Euclidean 3-space Σ′ of
our universe, where the three-dimensional rest
mass m0

0 in Σ0′ is equal to the one-dimensional
rest mass m0

0 in ρ0′ in magnitude.

Thus the location of the rest masses, (m0, ε
′/c2s)

and (m0
0, ε

0′/c2s), of symmetry-partner particles
at symmetry-partner points on the flat metric
spacetimes (Σ′, cst

′) of our universe and
(Σ0′, cst

0′) of the positive time-universe, will
cause Figs. 7a and 7b to be modified as Fig. 10a
and 10b respectively.

The one-dimensional isotopic scalar proper
metric space ρ0′ along the vertical, being
pseudo-orthogonal to the proper Euclidean
3-space Σ′ (as a hyper-surface) along the
horizontal, possesses static geodetic flow speed,
V0 = cs, at every point along its length, with
respect to 3-observers in Σ′, as mentioned
earlier. Consequently, the line of rest mass m0

0

of a particle or object in ρ0′ acquires the static
geodetic flow speed cs of ρ0′, but it is not in
motion at this speed along ρ0′. The possession
of the static geodetic flow speed cs alone by
m0

0 along ρ0′ is consequently a state of rest
energy m0

0c
2
s, with respect to 3-observers in Σ′,

as illustrated in Figs. 10a.

The one-dimensional isotopic scalar proper
metric space ρ0′ transforms into the proper
metric static time dimension cst

′ and the rest
energy m0

0c
2
s in ρ0′ transforms into rest energy

ε′ (= m0c
2
s) in cst

′ along the vertical, relative
to 3-observers in Σ′ in Fig. 10a. Like ρ0′

that transforms into cst
′, every point along cst

′

possesses the static geodetic flow speed cs
relative to 3-observers in Σ′. Hence the rest
energy ε′ (= m0c

2
s) in cst

′, acquires the static
geodetic flow speed cs of cst′, but it is not in
motion at this speed along cst

′, relative to the
3-observer in Σ′.

The discussions in the preceding two paragraphs
on Fig. 10a have their counterparts on Fig. 10b.
The one-dimensional isotopic scalar proper
metric space ρ′ along the horizontal, being
pseudo-orthogonal to the proper Euclidean 3-
space Σ0′ (as a hyper-surface) along the vertical,
possesses static geodetic flow speed, V0 = cs,
at every point along its length, with respect to
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3-observers0 in Σ0′ in Fig. 10b. Consequently,
the line of rest mass m0 of a particle or object in
ρ′ acquires the static geodetic flow speed cs of
ρ′, but it is not in motion at this speed along ρ′.

The possession of speed cs alone by m0 along
ρ′ is consequently a state of rest energy m0c

2
s,

with respect to 3-observers in Σ0′, as illustrated
in Figs. 10b.
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Fig. 10. Identical four-dimensional rest masses of symmetry-partner particles at
symmetry-partner points on the flat four-dimensional proper spacetimes of our universe and
the positive time-universe with respect to (a) 3-observers in the proper Euclidean 3-space of

our universe and, (b) 3-observers0 in the proper Euclidean 3-space of the positive
time-universe

The one-dimensional isotopic scalar proper metric space ρ′ transforms into the proper metric static
time dimension cst0′ and the rest energy m0c

2
s in ρ′ transforms into rest energy ε0′ (= m0

0c
2
s) in cst0′,

along the horizontal relative to 3-observers0 in Σ0′ in Fig. 10b. Like ρ′ that transforms into cst0′, every
point along cst0′ possesses the static geodetic flow speed cs. Hence the rest energy ε0′ (= m0

0c
2
s) in

cst
0′, acquires the static geodetic flow speed cs of cst0′, but it is not in motion at speed cs along cst0′,

relative to any 3-observer0 in Σ0′.

On the other hand, every point in the proper Euclidean 3-spaces, Σ′ and Σ0′, possesses zero static
geodetic flow speed, V0 = 0, relative to 3-observers in the respective 3-spaces. Consequently the
rest mass m0 in Σ′ is a state of rest mass with respect to 3-observers in Σ′ and m0

0 in Σ0′ is a state
of rest mass with respect to 3-observers0 in Σ0′, as illustrated in Figs. 10a and 10b.

The one-dimensional rest energy m0
0c

2
s in the one-dimensional scalar proper metric space ρ0′ along

the vertical in Figs. 10a can be said to be in non-detectable motion at constant speed, V0 = cs, along
the positive axis of ρ0′, relative to all 3-observers in the proper Euclidean 3-space Σ′ in that figure.
It is consequently in non-detectable absolute motion at speed cs along ρ0′. There is a mass relation
in the context of absolute motion that can be applied for the non-detectable absolute motion at static
geodetic flow speed, V0 = cs, of m0

0 along ρ0′, which is derived below.

Unlike the one-dimensional scalar proper metric space ρ0′ that is artificially considered to be inclined
at an angle η0 < π/2 to the horizontal, which projects a component ρ0h

′ into the proper Euclidean
3-space Σ′ (as a hyper-surface) along the horizontal in Eq. (1), the rest energy, ε0′ = m0

0c
2
s, in ρ0′

is neither a dimension nor the scalar fourth component of a four-vector. Hence it cannot be said
that m0

0c
2
s in ρ0′ that is artificially considered to be inclined at an angle, η0 < π/2, to the horizontal,

projects a component into Σ′ along the horizontal.

However a scalar ‘rest momentum’, p0′ = m0
0cs, is associated with the rest energy, ε0′ = m0

0c
2
s, as

ε0′ = p0′cs or m0
0c

2
s = (m0

0cs)cs. The ‘rest momentum’ p0′ in ρ0′ is the scalar fourth component
p0′ of momentum four-vector (p0′,m0v⃗) in (cst

′,Σ′). The p0′ in ρ0′ that is artificially considered to be
inclined at an angle, η0 < π/2, to the horizontal, projects a component p0h

′ into Σ′ (as a hyper-surface)
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along the horizontal namely,
p0′h = p0′ cos η0 (6a)

or
m0

0v0 = m0
0cs cos η0 . (6b)

As stated by Eq. (6b), it is the static geodetic
flow speed factor cs in, p0′ = m0

0cs, along the
artificially inclined ρ0′ that projects a component
of static geodetic flow speed v0 into Σ′, while
the rest mass m0

0 remains unchanged in the
projected component p0′h = m0

0v0. Thus
canceling m0

0 in Eq. (6b) gives

v0 = cs cos η0 . (7)

The static geodetic flow speed cs of every point
of the artificially inclined ρ0′, as the scalar fourth
component of the velocity four-vector, projects a
component v0 into Σ′ (as a hyper-surface) along
the horizontal, as stated by Eq. (7).

Multiplication of Eq. (6a) or (6b) by v0 gives the
rest energy formed in (or effectively ‘projected’
into) Σ′ by m0

0c
2
s in the artificially inclined ρ0′ as

ε0′h = m0
0v

2
0 = m0

0c
2
s cos

2 η0 . (8)

Let us write the rest energy, ε0h
′ = m0

0v
2
0 , as a rest

energy in terms of c2s by introducing another rest
mass m0

0h as

ε0′h = m0
0hc

2
s = m0

0c
2
s cos

2 η0 , (9a)

hence,
m0

0h = m0
0 cos

2 η0 . (9b)

Equation (9b) is the desired effective mass
‘projection’ expression. It states that the rest
mass m0

0 in the rest energy m0
0c

2
s in ρ0′ that is

artificially considered to be inclined at an angle
η0 < π/2 to the horizontal, forms rest mass factor
m0

0h in the rest energy m0
0hc

2
s (= m0

0v
2
0) formed in

(or effectively ‘projected’ into) Σ′.

Now ρ0′ containing m0
0c

2
s is naturally along the

vertical as illustrated in Fig. 10a. We must
therefore let ψ0 = π/2 for the natural situation
in Eq. (9b) to have

m0
0h = m0

0 cos
2 π

2
= 0 . (10)

Equation (10) states that m0
0 (as a factor in m0

0c
2
s)

in ρ0′ along the vertical forms absolute nothing
in Σ′ (as a hyper-surface) along the horizontal.
However m0

0 in ρ0′ definitely ‘casts a shadow’ in
Σ′.

Actually, it is the factor cos2 π/2 that vanishes and
not m0

0 multiplying it in Eq. (10). Thus let us re-
write Eq. (10) as

m0
0h = m0

0 cos
2 π

2
= 0×m0

0 ≡ ∅m0 . (11)

Instead of saying that m0
0 in ρ0′ forms (or

effectively ‘projects’) absolute nothing into Σ′, as
stated by Eq. (10), an entity ∅m0 is associated
with the ‘shadow’ of m0

0 in Σ′ in Eq. (11). The
entity ∅m0 is without the dummy superscript “0”
label, used to differentiate the coordinates and
parameters of the time-universes from those of
our universe and the negative universe, because
it is an entity formed in our proper Euclidean 3-
space Σ′, thereby being an entity of our universe.

Now any quantity of ∅m0 is equivalent to zero
quantity of m0

0 that forms it, as follows from,
∅m0 = 0 × m0

0, in Eq. (11). It then follows
that any quantity of ∅m0 is equivalent to zero
quantity of the rest mass m0 in our Euclidean
3-space Σ′, since m0 and m0

0 are equal in
magnitude, as deduced earlier. In other words,
any quantity of ∅m0 is no quantity of mass. The
name nomass shall be coined for ∅m0 from the
preceding statement. The ∅m0 is the proper (or
classical) nomass by virtue of the subscript “0”
on it. The nomass ∅m0 is non-observable and
non-detectable to 3-observers in Σ′, since it is
equivalent to zero rest mass.

An alternative name of intrinsic mass shall be
given to nomass, where intrinsic has the meaning
of non-observable and non-detectable. The ∅m0

is the intrinsic rest mass by virtue of the subscript
“0” on it. The proper (or classical) nomass (or the
intrinsic rest mass) ∅m0 is formed in the proper
nospace (or proper intrinsic space) ∅ρ′ projected
into Σ′ by ρ0′ in Eq. (3).
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Just as the rest mass m0
0 in ρ0′ of the

positive time-universe along the vertical forms
(or effectively ‘projects’) a ‘shadow’ of classical
nomass (or intrinsic rest mass) ∅m0 in the
proper Euclidean 3-space Σ′ of our universe
along the horizontal, as derived above, the rest
mass ε0′/c2s (= m0

0) in the proper metric time
dimension cst

0′ of the positive time-universe
along the horizontal in Fig. 10a, ‘casts a shadow’
in the proper metric time dimension cst

′ of our
universe along the vertical in that figure.

We must simply replace m0
0h by ε0′v /c

2
s and m0

0

by ε0′/c2s in Eq. (9b) to have the ‘shadow’ (or
effective ‘projection’) of ε0′/c2s in cst

′ along the
vertical as

ε0′v /c
2
s = (ε0′/c2s) cos

2 η0 . (12)

Equation (12) expresses the effective ‘projection’
into cst

′ along the vertical of ε0′/c2s in cst
0′

that is artificially considered to be inclined at
an angle η0 < π/2 to the vertical. However
cst

0′ is naturally along the horizontal as illustrated
in Fig. 10a, or η0 = π/2 naturally in Eq. (12).
Thus letting ψ0 = π/2 in Eq. (12) for the natural
situation gives

ε0′v /c
2
s = (ε0′/c2s) cos

2 π

2
= 0 . (13)

Equation (13) states that ε0′/c2s in cst0′ along the
horizontal forms (or effectively ‘projects’) absolute
nothing into cst

′ along the verrical in Fig. 10a.
However ε0′/c2s in cst0′ certainly ‘casts a shadow’
in cst

′. Actually it is the factor cos2 π/2 that
vanishes and not ε0′/c2s multiplying it in Eq. (13).
Thus let us re-write Eq. (13) as

ε0′v /c
2
s = (ε0′/c2s) cos

2 π

2
= 0×ε0′/c2s ≡ ∅ε′/∅c2s .

(14)
While Eq. (13) says that ε0′/c2s in cst0′ along the
horizontal forms absolute nothing in cst

′ along
the vertical in Fig. 10a, an entity ∅ε′/∅c2s is
associated with the ‘shadow’ of ε0′/c2s in cst

′ in
Eq. (14). The ∅ε′/∅c2s is without the dummy
superscript “0” label, because it is an entity
formed in the time dimension cst′ of our universe,
thereby being an entity of our universe without
superscript “0” label.

Now any quantity of ∅ε′/∅c2s is equivalent to zero
quantity of the rest mass ε0′/c2s that forms it, as
follows from, ∅ε′/∅c2s = 0 × ε0′/c2s in Eq. (14).
Hence any quantity of ∅ε′/∅c2s is equivalent
to zero quantity of rest mass ε′/c2s in our time
dimension cst

′, since ε0′/c2s and ε′/c2s are equal
in magnitude. In other words, any quantity of
∅ε′/∅c2s is no quantity of mass. The name
nomass shall be coined for ∅ε′/∅c2s from the
preceding statement. The ∅ε′/∅c2s is the proper
(or classical) nomass by virtue of the prime label
on it. The nomass ∅ε′/∅c2s is non-observable
and non-detectable to 1-observers in cst

′, since
it is equivalent to zero rest mass.

An alternative name of intrinsic mass shall be
given to ∅ε′/∅c2s, where ∅ε′/∅c2s is the intrinsic
rest mass by virtue of the prime label on it. The
proper (or classical) nomass (or intrinsic rest
mass) ∅ε′/∅c2s is resident in the proper notime
(or proper intrinsic time) dimensions ∅cs∅t′
projected into cst′ along the vertical by cst0′ along
the horizontal in Eq. (5).

Graphically let us incorporate ∅m0 formed in
∅ρ′ along the horizontal and ∅ε′/∅c2s formed
in ∅cs∅t′ along the vertical into Fig. 10a to
have Fig. 11a. It is straight forward to repeat
the derivations from Eqs. (6a) and (6b) through
Eq. (14), based on Fig. 10a, which lead to
Fig. 11a, for Fig. 10b. The derivations based
on Fig. 10b shall not be done to save space,
but Fig. 11b they lead to shall be presented
as counterpart in the positive time-universe of
Fig. 11a in our universe.

It is clear from Fig. 11a that the flat
two-dimensional proper metric spacetime
(ρ0′, cst

0′) containing two-dimensional rest mass
(m0

0, ε
0′/c2s) of the positive time- universe,

with respect to 3-observers in the proper
Euclidean 3-space Σ′ of our universe, forms
(or projects) flat two-dimensional proper intrinsic
metric spacetime (∅ρ′,∅cs∅t′) containing two-
dimensional intrinsic rest mass (∅m0, ε

′/∅c2s)
into (or ‘underneath’) the flat four-dimensional
proper metric spacetime (Σ′, cst

′) containing the
four-dimensional rest mass (m0, ε

′/c2s) of the
symmetry-partner particle of our universe.
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Fig. 11. (a) Two-dimensional rest mass of a particle on the flat two-dimensional proper metric
spacetime of the positive time-universe, with respect to 3-observers in the proper Euclidean

3-space of our universe, ‘projects’ two-dimensional intrinsic rest mass into projective
two-dimensional proper intrinsic metric spacetime underneath (or embedded in) the flat
four-dimensional rest mass of the symmetry-partner particle in the flat four-dimensional

proper metric spacetime in our universe and, (b) conversely

Conversely, the flat two-dimensional proper
metric spacetime (ρ′, cst

′) containing two-
dimensional rest mass (m0, ε

′/c2s) of our
universe, with respect to 3-observers0 in the
proper Euclidean 3-space Σ0′ of the positive
time-universe in Fig. 11b, forms (or projects)
flat two-dimensional proper intrinsic metric
spacetime (∅ρ0′,∅cs∅t0′) containing two-
dimensional intrinsic rest mass (∅m0

0, ε
0′/∅c2s)

into (or ‘underneath’) the flat four-dimensional
proper metric spacetime (Σ0′, cst

0′) containing
the four-dimensional rest mass (m0

0, ε
0′/c2s) of

the symmetry-partner particle of the positive
time-universe.

However the flat two-dimensional proper metric
spacetime (ρ0′, cst

0′) containing two-dimensional
rest mass (m0

0, ε
0′/c2s) of a particle of the positive

time-universe, with respect to 3-observers in the
proper Euclidean 3-space Σ′ of our universe
in Fig. 11a, is actually a flat four-dimensional
proper metric spacetime (Σ0′, cst

0′) containing
four-dimensional rest mass (m0

0, ε
0′/c2s) of the

particle with respect to 3-observers0 in the proper
Euclidean 3-space Σ0′ of the positive time-
universe.

Likewise the flat two-dimensional proper metric
spacetime (ρ′, cst

′) containing two-dimensional
rest mass (m0, ε

′/c2s) of the symmetry-partner
particle of our universe, with respect to 3-
observers in the proper Euclidean 3-space Σ0′ of
the positive time-universe in Fig. 11b, is actually
a flat four-dimensional proper metric spacetime

(Σ′, cst
′) containing four-dimensional rest mass

(m0, ε
′/c2s) of the symmetry-partner particle, with

respect to 3-observers in the proper Euclidean
3-space Σ′ of our universe.

What must be concluded from the foregoing
four paragraphs is that, the flat four-dimensional
proper metric spacetime (Σ0′, cst

0′) containing
the four-dimensional rest mass (m0

0, ε
0′/c2s)

of a particle or object, of the positive time-
universe, forms (or projects) flat two-dimensional
proper intrinsic metric spacetime (∅ρ′,∅cs∅t′)
containing two-dimensional intrinsic rest mass
(∅m0,∅ε′/∅c2s) of the particle or object into (or
‘underneath’) the flat four-dimensional proper
metric spacetime (Σ′, cst

′) containing the four-
dimensional rest mass (m0, ε

′/c2s) of the the
symmetry-partner particle or object of our
universe.

Although the two proper spacetimes containing
rest masses and the proper intrinsic spacetime
containing intrinsic rest mass in each of Figs. 11a
and 11b exist with respect to the indicated 3-
observers, let us hide the flat two-dimensional
proper metric spacetime (ρ0′, cst0′) containing
two-dimensional rest mass (m0

0, ε
0′/c2s) of

the positive time-universe with respect to 3-
observers in the Euclidean 3-space Σ′ of
our universe in Fig. 11a, which are hidden
to observers in our universe and cannot
appear in physics in our universe from that
figure. On the other hand, the two-dimensional
proper intrinsic metric spacetime (∅ρ′,∅cs∅t′)
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containing intrinsic rest mass (∅m0,∅ε′/∅c2s)
formed in our universe by (ρ0′, cst0′) containing
(m0

0, ε
0′/c2s) must be retained, since it can appear

in intrinsic physics in our universe. When the
resulting diagram in our (or positive) universe
is combined with its symmetry-partner in the
negative universe, we have Fig. 12a.

Likewise, let us hide the flat two-dimensional
proper metric spacetime (ρ′, cst′) containing two-
dimensional rest mass (m0, ε

′/c2s) of our universe
with respect to 3-observers0 in the Euclidean
3-space Σ0′ of the positive time-universe in

Fig. 11b, which are hidden to 3-observers0 in
the positive time-universe and cannot appear in
physics in the positive time-universe from that
figure. On the other hand, the two-dimensional
proper intrinsic metric spacetime (∅ρ0′,∅cs∅t0′)
containing intrinsic rest mass (∅m0

0,∅ε0′/∅c2s)
formed in the positive time-universe by (ρ′, cst′)
containing (m0, ε

′/c2s), must be retained, since
it can appear in intrinsic physics in the positive
time-universe. When the resulting diagram in
the positive time-universe is combined with its
symmetry-partner in the negative time-universe,
we have Fig. 12b.
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Fig. 12. Flat two-dimensional proper intrinsic metric spacetime containing two-dimensional
intrinsic rest mass of a particle or object embedded in (or ‘underlying’) the flat

four-dimensional proper metric spacetime containing the four-dimensional rest mass of the
particle or object (a) in our universe and the negative universe and (b) in the positive

time-universe and the negative time-universe

The quartet of four-dimensional rest masses located in the quartet of four-dimensional spacetimes
in Figs. 12a and 12b, belong to a quartet of symmetry-partner particles or objects. The masses of
the members of every quartet of symmetry-partner particles or bodies are symmetrically located in
spacetimes in the four universes. This means that they are located at symmetry-partner points in
spacetimes in the universes.

3.2 Showing that Symmetry-partner Point in Spacetimes in the Four
Universes are Effectively not Separated

Let us temporarily keep the rest masses, the intrinsic spacetimes and the intrinsic rest masses away
from Figs. 12a and 12b and present the resulting pairs of four-dimensional spacetimes as Figs. 13a
and 13b with some further details shown.

Now the proper Euclidean 3-space Σ0′ of the positive time-universe with respect to 3-observers0 in it
in Fig. 13b, is what appears as the proper time dimension cst′ of our universe relative to 3-observers
in the Euclidean 3-space Σ′ of our universe in Fig. 13a. Hence points, O0, B0 and B0

1, in Fig. 13b are
the same as the points, O, B and B1, in Fig. 13a.
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Fig. 13. Four-dimensional spacetimes of the four universes with quartets of
symmetry-partner points in spacetimes shown

Likewise the proper Euclidean 3-space Σ′ of
our universe, with respect to 3-observers in it
in Fig. 13a, is what appears as the proper time
dimension cst

0′ of the positive time-universe
relative to 3-observers0 in the Euclidean 3-space
Σ0′ of the positive time-universe in Fig. 13b.
Hence points, O, A and A1, in Fig. 13a are the
same as points, O0, A0 and A0

1 in Fig. 13b.

The points, O0∗, B0∗ and B0∗
1 , in Fig. 13b are the

same as the points, O∗, B∗ and B∗
1, in Fig. 13a

and the points, O∗, A∗ and A∗
1, in Fig. 13a are

the same as points, O0∗, A0∗ and A0∗
1 in Fig. 13b.

The point C0 in spacetime (Σ0′, cst
0′) in Fig. 13b

is the same as point C in (Σ′, cst
′) in Fig. 13a and

point C∗ in (−Σ′∗,−cst′∗) in Fig. 13a is the same
as point C0∗ in (−Σ0′∗,−cst0

′∗) in Fig. 13b.

As follows from the preceding three paragraphs,
we only need to show the non-separation
or otherwise of symmetry partner points in
spacetime in Fig. 13a to confirm their non-
separations from their corresponding symmetry-
partner points in spacetime in Fig. 13b and
conversely. In other words, if points A and A∗ are
effectively not separated, then the four points, A,
A∗, A0 and A0∗, are effectively not separated, for
instance, since points A and A0 are the same and
points A∗ and A0∗ are the same.

Now Fig. 13a is Fig. 5 of [1]. It is shown
under Fig. 5 of that paper that points A and
A∗ in Fig. 13a are effectively separated by zero
distance, d − d∗ = 0. Hence points A and A∗

are effectively not separated. Points B and B∗ in
Fig. 13a are effectively separated by zero interval
of proper time dimension, cs∆t′ − cs∆t

′∗ = 0.
Hence points B and B8 are effectively not

separated. Consequently points C and C∗ are
effectively not separated in Fig. 13a. Then as
follows from the preceding paragraph, points
A, A∗, A0 and A0∗ in Figs. 13a and 13b are
effectively not separated; points, B, B∗, B0 and
B0∗, in Figs. 13a and 13b are effectively not
separated and, consequently, points, C, C∗, C0

and C0∗, in Figs. 13a and 13b are effectively not
separated. Although every quartet of symmetry-
partner points in spacetimes in the four universes
are effectively not separated, they do not touch,
because they are points of different spacetimes.

It is also described under Fig. 5 of [1] that, as
the rest mass m0 of a particle in Σ′ moves at
speed v from point A to point A1, the rest
mass −m∗

0 of the symmetry-partner particle
in −Σ′∗ moves from point A∗ to point A∗

1 at
identical speed v. The one-dimensional rest
mass ε′/c2s in cst

′ moves at the speed v from
point B to point B1 and −ε′∗/c2s in −cst′∗ moves
at identical speed v from point B∗ to point B∗

1 in
Fig. 13a. The motions at identical speed v of
the rest masses, m0, ε′/c2s, −m∗

0 and −ε′∗/c2s,
occur simultaneously in their respective spaces
and time dimensions in Fig. 13a. This follows
from the so far prescribed perfect symmetry of
state between our (or positive) universe and the
negative universe.

Likewise as as m0
0 of a particle in Σ0′ in Fig. 13b

(which is actually ε′/c2s in cst′ in Fig. 13a), moves
at speed v from point A0 to point A0

1, the rest
mass −m0∗

0 of the symmetry-partner particle
in −Σ0′∗ moves from point A0∗ to point A0∗

1 at
identical speed v. The one-dimensional rest
mass ε0′/c2s in cst0′ in Fig. 13b (which is actually
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m0 in Σ′ in Fig. 13a), moves at equal speed v

from point B0 to point B0
1 and −ε0

′∗
/c2s in −cst′0∗

moves at identical speed v from point B0∗ to point
B0∗

1 in Fig. 13b. The motions at identical speed
v of the rest masses, m0

0, ε0′/c2s, −m0∗
0 and

−ε′0∗/c2s, occur simultaneously in their respective
spaces and time dimensions in Fig. 13b. This
again follows from a prescribed perfect symmetry
of state between positive time-universe and the
negative time-universe.

The rest masses, m0, ε′/c2s, −m∗
0 and −ε′∗/c2s

in Fig. 13a and m0
0, ε0′/c2s, −m0∗

0 and −ε′0∗/c2s
in Figs. 13b, mentioned in the preceding two
paragraphs, are symmetry-partners. They
commence motions from symmetry-partner
points, A, B, A∗, B∗, A0, B0, A0∗ and B0∗; move
at identical speed v and reach new symmetry-
partner points, A1, B1, A∗

1, B∗
1, A0

1, B0
1, A0∗

1 and
B0∗

1 respectively simultaneously. The new quartet
of symmetry-partner points, A1, A∗

1, A0
1 and A0∗

1 ,
are effectively not separated and the new quartet
of symmetry-partner points, B1, B∗

1, B0
1 and B0∗

1 ,
are effectively not separated.

The import of the foregoing discussions is to
show that the members of every quartet of
symmetry-partner particles or bodies in the
four universes are effectively not separated
in space or time, whether they are stationary
or in motion in their respective spacetimes.
However they do not touch because they exist
in different spacetimes. The fact that they are in
simultaneous identical (or symmetrical) motions
in their respective spacetimes is implied and this
shall be shown more rigorously elsewhere.

As established in previous papers [1, 2], our (or
positive) universe is separated by event horizons
along the time dimensions, cst′ and −cst′∗, in
Fig. 13a. This makes observers in our universe
to be unable to observe the negative universe
and the events taking place in it, vice versa. The
positive time-universe is likewise separated from
the negative time-universe by event horizons
along the time dimensions, cst0′ and −cst′0∗,
in Fig. 13b. This likewise makes observers in the
positive time-universe to be unable to observe
the negative time-universe and the events taking
place in it, vice versa.

On the other hand, the Euclidean 3-space Σ0′

of the positive time-universe containing three-

dimensional particles and bodies, with respect to
3-observers0 in it in Fig. 13b, is the scalar time
dimension cst

′ of our universe containing one-
dimensional particles and bodies, with respect
to 3-observers in the Euclidean 3-space Σ′ of
our universe. The scalar time dimension cst

0′

of the positive time-universe, containing one-
dimensional particles and bodies, with respect
to 3-observers in the Euclidean 3-space Σ0′

of the positive time-universe in Fig. 13b, is
the Euclidean 3-space Σ′ containing three-
dimensional particles and bodies of our universe,
with respect to 3-observers in Σ′ in Fig. 13a.

It follows from the preceding paragraph that
the positive time-universe cannot be perceived
better than the scalar static time dimension cst

′

containing one-dimensional particles and bodies
of our universe, by 3-observers in the Euclidean
3-space Σ′ of our universe, and conversely. In
symmetry, the negative time-universe cannot
be perceived better than the scalar static time
dimension −cst′∗ containing one-dimensional
particles and bodies of the negative universe,
by 3-observers* in the Euclidean 3-space Σ′∗ of
the negative universe, and conversely.

4 FINAL JUSTIFICATION FOR
THE NEW SPACETIME AND
INTRINSIC SPACETIME
GEOMETRICAL REPRESEN-
TATIONS OF LORENTZ
TRANSFORMATION AND
INTRINSIC LORENTZ
TRANSFORMATION AND
THEIR INVERSES IN THE
TWO-WORLD PICTURE

New geometrical representations of
Lorentz transformation and intrinsic Lorentz
transformation (LT/∅LT) and their inverses are
derived and presented as Figs. 8a and 8b and
Figs. 9a and 9b of [1], within the two-world picture
isolated in that paper. However at least two
outstanding issues about those diagrams remain
to be resolved (or explained) in order to finally
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justify them. The first issue is the unexplained
origin of Fig. 8b that must necessarily be drawn
to complement Fig. 8a of [1] in deriving ∅LT and
LT.

The second issue is the unspecified reason why
anticlockwise relative rotations of intrinsic affine
spacetime coordinates are positive rotations
(involving positive intrinsic angle ∅ψ) with respect
to 3-observers in the Euclidean 3-spaces Σ ′

and −Σ ′∗ in Fig. 8a of [1], while, at the same
time, clockwise relative rotations of intrinsic affine
spacetime coordinates are positive rotations
(involving positive intrinsic angle ∅ψ) with
respect to 1-observers in the proper metric time
dimensions, cst′ and −cst′∗, in Fig. 8b of that
paper. These two issues shall be explained within
the larger four-world picture encompassed by
Figs. 12a and 12b of this paper.

Let us as done in deriving Figs. 8a and 8b and
their inverses, Figs. 9a and 9b, of [1], toward
the derivation of intrinsic Lorentz transformation
and Lorentz transformation (∅LT/LT) and their
inverses in the positive and negative universes
in that paper, prescribe particle’s primed and
unprimed affine frames in terms of extended
affine spacetime coordinates in the positive
(or our) universe as, (x̃ ′, ỹ ′, z̃ ′, cst̃

′) and
(x̃, ỹ, z̃, cs t̃ ), respectively. They are underlay
by particle’s primed and unprimed intrinsic affine
frames in terms of extended intrinsic affine
coordinates, (∅x̃ ′,∅cs∅t̃ ′) and (∅x̃,∅cs∅t̃ ),
respectively.

The prescribed perfect symmetry of state
between the positive universe and the negative
universe in [1], implies that there exist
identical symmetry-partner particle’s primed
affine frame and identical particle’s unprimed
affine frame, (−x̃ ′∗, −ỹ ′∗, −z̃ ′∗, −cs t̃ ′∗) and
(−x̃ ∗, −ỹ ∗, −z̃ ∗,−cst̃ ∗), respectively, as
well as their underlying identical symmetry-
partner particle’s primed intrinsic affine frame
and symmetry-partner particle’s unprimed
intrinsic affine frame, (−∅x̃ ′∗,−∅cs∅t̃ ′∗) and
(−∅x̃ ∗,−∅cs∅t̃ ∗), respectively in the negative
universe.

Let us consider the motion at a constant speed
v of the rest mass m0 of a particle along the
affine space coordinate x̃′ of its primed affine
frame and the underlying intrinsic motion at
constant intrinsic speed ∅v of the intrinsic rest
mass ∅m0 of the particle along the primed
intrinsic affine space coordinate ∅x̃ ′ of its primed
intrinsic affine frame, relative to a ‘stationary’ 3-
observer in the proper Euclidean 3-space Σ ′

in the positive universe. Again the prescribed
perfect symmetry of state between the positive
and negative universes implies that the rest
mass −m∗

0 of the symmetry-partner particle
is in simultaneous motion at equal constant
speed v along the −x̃ ′∗-axis of its primed affine
frame of reference and its intrinsic rest mass
−∅m∗

0 is in simultaneous intrinsic motion at
equal intrinsic speed ∅v along the intrinsic affine
space coordinate −∅x̃ ′∗ of its primed intrinsic
affine frame, relative to the symmetry-partner 3-
observer* in the proper Euclidean 3-space −Σ ′∗

in the negative universe.

As developed in sub-section 4.4 of [1], the
simultaneous identical motions of symmetry-
partner particles relative to symmetry-partner
‘stationary’ observers in the positive and
negative universes, described in the preceding
paragraph, give rise to Fig. 8a of that article
with respect to ‘stationary’ 3-observers in the
Euclidean metric 3-spaces, Σ ′ and −Σ ′∗,
which shall be reproduced here as Fig. 14a.
The flat proper metric spacetimes, (Σ ′, cst

′)
and (−Σ ′∗,−cst′∗), in which the ‘stationary’
observers are located and their underlying flat
proper intrinsic metric spacetimes, (∅ρ′,∅cs∅t′)
and (−∅ρ′∗,−∅cs∅t′∗), are not shown in
Fig. 14a for convenience, unlike as done in Fig. 8a
of [1].

It is to be remembered that the particle’s
unprimed affine frame (x̃, ỹ, z̃, cst̃ ) (also
denoted by (Σ̃′, cst̃

′) in Fig. 14a), is embedded in
the flat proper metric spacetime (Σ′, cst

′) in the
positive universe and (−x̃ ∗, −ỹ ∗, −z̃ ∗,−cst̃ ∗)
(also denoted by (−Σ̃′∗,−cst̃ ′∗) in Fig. 14a),
is embedded in the proper metric spacetime
(−Σ′∗,−cst′∗) in the negative universe in
Fig. 14a.
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Fig. 14. Rotations of primed intrinsic affine spacetime coordinates of particles’ primed
intrinsic affine frames relative to the projective unprimed intrinsic affine spacetime

coordinates of the particles’ unprimed intrinsic affine frames that are valid relative to the
‘stationary’ symmetry-partner 3-observers in the proper metric Euclidean 3-spaces (not

shown) in (a) the positive and negative universes and (b) the positive time-universe and the
negative time-universe

The so far prescribed symmetry of state among
the four universes encompassed by Figs. 12a
and 12b of this paper, but which shall be
validated elsewhere, implies that identical
symmetry-partner particles undergo identical
motions simultaneously relative to identical
symmetry-partner ‘stationary’ observers in the
four universes. It follows from this that Fig. 14b
drawn upon the reference flat four-dimensional
proper metric spacetimes and its underlying
flat two-dimensional proper intrinsic metric
spacetimes of the positive time-universe and
the negative time-universe in Fig. 12b, co-
exists with Fig. 14a drawn upon Fig. 12a in
nature. The flat proper metric spacetimes,
(Σ0′, cst

0′) and (−Σ0′∗,−cst0′∗), in which the
‘stationary’ observers0 are located and their
underlying flat proper intrinsic metric spacetimes,
(∅ρ0′,∅cs∅t0′) and (−∅ρ0′∗,−∅cs∅t0′∗), are
again not shown in Figs. 14b for convenience.

It is also to be remembered that the particle’s
unprimed affine frame (x̃0, ỹ0, z̃0, cst̃

0) (also
denoted by (Σ̃0′, cs t̃

0′) in Fig. 14b), is
embedded in the flat proper metric spacetime
(Σ0′, cst

0′) in the positive time-universe and
(−x̃ 0∗, −ỹ 0∗, −z̃ 0∗,−cst̃ 0∗) (also denoted by
(−Σ̃0′∗,−cst̃0′∗) in Fig. 14b), is embedded in the
proper metric spacetime (−Σ0′∗,−cst0′∗) in the
negative time-universe in Fig. 14b.

Fig. 14b is valid with respect to 3-observers
in the Euclidean 3-spaces Σ0′ of the positive
time-universe and −Σ0′∗ of the negative time-
universe (not shown). It is to be noted that the
anti-clockwise rotations of the primed intrinsic
affine spacetime coordinates ∅x̃ ′ and ∅cs∅t̃ ′
relative to their projective unprimed intrinsic
affine coordinates ∅x̃ and ∅cs∅t̃ respectively,
by positive intrinsic angle ∅ψ, with respect to 3-
observers in the Euclidean 3-space Σ ′ and −Σ ′∗

(along the horizontal) (not shown) in Fig. 14a,
correspond to clockwise rotations of the primed
intrinsic affine spacetime coordinates ∅x̃ 0′ and
∅cs∅t̃ 0′ relative to their projective unprimed
intrinsic affine coordinates ∅x̃ 0 and ∅cs∅t̃ 0
respectively, by positive intrinsic angle ∅ψ, with
respect to 3-observers0 in Σ 0′ and −Σ 0′∗ (along
the vertical) (not shown) in Fig. 14b.

Fig. 14b co-exists with Fig. 14a in nature and
must complement Fig. 14a toward the derivation
of intrinsic Lorentz transformation (∅LT) and
Lorentz transformation (LT) graphically in the
positive (or our) universe and the negative
universe, by physicists in our universe and the
negative universe. However Fig. 14b in its
present form cannot serve the complementary
role to Fig. 14a, because it contains the
spacetime and intrinsic spacetime coordinates of
the positive time-universe and the negative time-
universe, which are elusive to observers in our

34



Joseph; PSIJ, 24(12): 10-38, 2020; Article no.PSIJ.63757

(or positive) universe and the negative universe,
or which cannot appear in physics in the positive
and negative universes.

In order for Fig. 14b to be able to serve the
complementary role to Fig. 14a toward deriving
the ∅LT and LT in the positive and negative
universes, it must be appropriately modified.
As derived in section one of this paper and
mentioned in the preceding section, the proper
Euclidean 3-spaces, Σ0′ and −Σ0′∗, of the
positive time-universe and the negative time-
universe, with respect to 3-observers in them,
are the proper time dimensions, cst′ and −cst′∗,
respectively, with respect to 3-observers in the
proper Euclidean 3-spaces, Σ ′ and −Σ ′∗, of
our universe and the negative universe, and
the proper time dimensions, cst0′ and −cst0′∗,
of the positive time-universe and the negative
time-universe, with respect to 3-observers in
the proper Euclidean 3-spaces, Σ0′ and −Σ0′∗,
of the positive time-universe and the negative
time-universe, are the proper Euclidean 3-
spaces, Σ ′ and −Σ ′∗, of our universe and the
negative universes respectively, with respect to
3-observers in Σ ′ and −Σ ′∗.

As follows from the preceding paragraph,
Fig. 14b will contain the spacetime and intrinsic
spacetime coordinates of our (or positive)
universe and the negative universe solely by
performing the following transformations of

spacetime and intrinsic spacetime coordinates
on it relative to 3-observers in the Euclidean 3-
spaces Σ ′ and −Σ ′∗ of our universe and the
negative universe.

Σ̃0 → cs t̃ ; cs t̃
0 → Σ̃ ; −Σ̃ 0∗ → −cs t̃

∗ ;

−cs t̃
0∗ → −Σ̃∗ ; ∅x̃ 0 → ∅cs∅t̃ ;∅cs∅t̃ 0 → ∅x̃ ;

−∅x̃0∗ → −∅cs∅t̃∗ ; −∅cs∅t̃ 0∗ → −∅x̃∗ ;

∅x̃ 0′ → ∅cs∅t̃ ′ ; ∅cs∅t̃ 0′ → ∅x̃′ ;

−∅x̃0′∗ → −∅cs∅t̃ ′∗ ;−∅cs∅t̃ 0′∗ → −∅x̃ ′∗.
(15)

System (15) expresses the transformation of the
affine specetimes and intrinsic affine spacetimes
of the positive time-universe and the negative
time-universe into the affine spacetimes and
intrinsic affine spacetimes of our universe and the
negative universe. There are the corresponding
transformations of the metric spacetime and
intrinsic metric spacetimes between the two
universes, which are given by simply removing
the tilde label in system (15).

The implementation of the affine coordinate
and intrinsic affine coordinate transformations
of systems (15) on Fig. 14b gives Fig. 15b
containing the affine spacetime coordinates and
intrinsic affine spacetimes coordinates of our
universe and the negative universe (shown in
black color).

Fig. 15. (b) Complementary diagram to Fig. 14a obtained by transforming the affine
spacetime and intrinsic affine spacetime coordinates of the positive time-universe and the
negative time-universe in Fig. 14b into the affine spacetime and intrinsic affine spacetime

coordinates of the positive (or our) universe and the negative universe; is valid with respect
to the ‘stationary’ 1-observers in the proper metric time dimensions of our universe and the
negative universe (not shown) and, (a) the complementary diagram to Fig. 14b obtained by
transforming the affine spacetime and intrinsic affine spacetime coordinates of the positive
(or our) universe and the negative universe in Fig. 14a into the affine spacetime and intrinsic
affine spacetime coordinates of the positive time-universe and the negative time-universe; is

valid with respect to the ‘stationary’ 1-observers0 in the proper time dimensions of the
positive time-universe and the negative time-universe (not shown)
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Fig. 15a is valid with respect to ‘stationary’ 1-
observers in the proper metric time dimensions,
cst

′ and −cst′∗, of our (or positive) and negative
universes (not shown), where these ‘stationary’
1-observers are the ‘stationary’ 3-observers in
the proper Euclidean metric 3-spaces, Σ0′ and
−Σ0′∗, in Fig. 14b. Since Fig. 15a contains
the affine spacetime/intrinsic affine spacetime
coordinates of the positive (or our) universe and
the negative universe solely, it can serve as
a complementary diagram to Fig. 14a toward
deriving ∅LT and LT in the positive (or our)
universe and the negative universe. Indeed
Fig. 14a and Fig. 15b are the same as the more
detailed forms of Figs. 8a and 8b of [1], with
which the ∅LT and LT are derived in the positive
(or our) universe and the negative universe in
that paper.

On the other hand, Fig. 14a will contain the
spacetime and intrinsic spacetime coordinates
of the positive time-universe and the negative
time-universe solely, as shown in (in orange
color) Fig. 15a, by performing the inverses of the
transformations of affine spacetime and intrinsic
affine spacetime coordinates of system (15) (that
is, by reversing the directions of the arrows in
system (15)) on Fig. 14a. Just as Fig. 15b must
complement Fig. 14a for the purpose of deriving
∅LT and LT in the positive (or our) universe
and the negative universe, as presented in sub-
section 4.4 of [1], Fig. 15a must complement
Fig. 14b for the purpose of deriving ∅LT and LT
in the positive time-universe and the negative
time-universe by physicists in those universes.

The clockwise sense of relative rotations of
primed intrinsic affine spacetime coordinates
by positive intrinsic angles ∅ψ with respect
to ‘stationary’ 1-observers in the metric time
dimensions, cst

′ and −cst ′∗, (not shown)
in Fig. 15b, follows from the validity of the
clockwise sense of relative rotations of primed
intrinsic affine spacetime coordinates by positive
intrinsic angle ∅ψ with respect to ‘stationary’
3-observers0 in the proper Euclidean metric 3-
spaces, Σ0′ and −Σ0′∗, in Fig. 14b. The 1-
observers in cst′ and −cst′∗ in Fig. 15b are what
the 3-observers0 in Σ ′0 and −Σ ′0∗ in Fig. 14b
transform to, as noted above.

The second outstanding issue about the
diagrams of Figs. 8a and 8b of [1], mentioned

at the beginning of this section namely, the
unexplained reason why anti-clockwise relative
rotations of intrinsic affine spacetime coordinates
with respect to 3-observers in the Euclidean
3-spaces, Σ ′ and −Σ ′∗, are positive rotations
involving positive intrinsic angles ∅ψ in Fig. 8a
of [1], while, at the same time, clockwise
relative rotations of intrinsic affine spacetime
coordinates with respect to 1-observers in the
time dimensions, cst′ and −cst′∗, are positive
rotations involving positive intrinsic angles ∅ψ in
Fig. 8b of [1], has thus been explained above.

Since Fig. 8b of [1] or Fig. 15b of this article
has been shown to originate upon the reference
metric spacetime/intrinsic metric spacetime
diagram of Fig. 12b of this article, which is valid
with respect to 3-observers0 in the Euclidean
3-spaces, Σ0′ and −Σ0′∗ of the positive
and negative time-universes, the origin from
the positive time-universe and negative time-
universe of Fig. 8b of [1] (or Fig. 15b of this
article), which must necessarily be drawn to
complement Fig. 8a of [1] (or Fig. 14a of this
article), in deriving ∅LT and LT in our (or
positive) universe and the negative universe,
has been shown. Thus the first outstanding
issue about Figs. 8a and 8b of [1], which could
not be explained in that article, mentioned
at the beginning of this section, namely the
unexplained origin of Fig. 8b that must be drawn
to complement Fig. 8a of [1] in deriving the ∅LT
and LT in our universe and the negative universe,
has been explained within the larger four-world
picture. The four-world background of Figs. 8a
and its complementary diagram of Fig. 8b of [1]
(or Fig. 14a and Fig. 15b of this article), has thus
been established.

The new geometrical representation of
Lorentz transformation and intrinsic Lorentz
transformation (LT/∅LT) in our universe and
the negative universe of Figs. 8a and 8b of
[1] (or Fig. 14a and Fig. 15b of this article), is
said to rest on a two-world background in [1]
and [2], because those diagrams contain the
spacetime and intrinsic spacetime dimensions of
the positive (or our) universe and the negative
universe solely, and also because the origin of
Fig. 8b in [1] (or Fig. 15b of this article) from the
diagram of Fig. 12b of of this article in the positive
time-universe and the negative time-universe is
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unknown in [1]. The ∅LT/LT and, consequently,
the intrinsic special theory of relativity and special
theory of relativity (∅SR/SR), shall be said to rest
on a four-world background henceforth.

It is to be noted however that, although they have
their origin in the four-world picture, Fig. 14a
and its complementary diagram of Fig. 15b of
this article (or Figs. 8a and 8b of [1]), contain
the spacetime/intrinsic spacetime coordinates of
our universe and the negative universe solely,
as though they are two-world diagrams. Also,
although Figs. 14b and its complementary
diagram of Fig. 15a have their origin in the four-
world picture, they contain the spacetime/intrinsic
spacetime coordinates of the positive time-
universe and the negative time-universe solely,
as though they are two-world diagrams.

5 CONCLUSION

This paper shall be concluded with remarks that,
along with two previous papers [1, 2], a quartet of
flat four-dimensional proper metric spacetimes (in
assumed classical gravitational fields), containing
the four-dimensional rest masses of particles and
bodies and their underlying flat two-dimensional
proper intrinsic metric spacetimes, containing
the two-dimensional intrinsic rest masses of
particles and bodies, of four universes have
been derived. The quartet of four-dimensional
proper spacetimes are placed relative to one
another, such that corresponding (or symmetry-
partner) points in them are effectively not
separated in space or time, but they do not
touch, because they are points in separate
spacetimes. Consequently members of every
quartet of symmetry-partner particles or bodies
located at symmetry-partner points in the quartet
of spacetimes of the universes, do not touch or
interact.

A new spacetime/intrinsic spacetime geometrical
representation of Lorentz transformation (LT)
and intrinsic Lorentz transformation (∅LT)
and their inverses, comprising of a set of
four spacetime/intrinsic spacetime diagrams,
developed in the ensuing four-world picture,
affords the formulation of identical special
theory of relativity (SR) on flat four-dimensional
spacetime and identical intrinsic special theory of
relativity (∅SR) on flat two-dimensional intrinsic

spacetime, in each of the four universes. What
is left to be done in order to have a complete
description of the coexistence of four symmetrical
universes in separate spacetimes in nature, is
formal validations of symmetry of natural laws
and symmetry of state among the four universes.
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