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ABSTRACT 
 

Six news dinuclear metal transition (Mn(II) (1), Fe(II) (2), Co(II) (3), Ni(II) (4), Cu(II) (5)  and Zn(II) 
(6)) complexes have been synthesized from a new hexadentate Schiff base N’1,N’4-bis(1-(pyridin-2-
yl)ethylidene)succinohydrazide (H2L). The ligand was characterized by elemental analysis, FTIR, 
UV-visible, 1H NMR and 13C NMR. The synthetized compounds have been investigated by 
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elemental analysis, FTIR and UV-visible spectroscopies, molar conductance and room temperature 
magnetic moments measurement. The results show that the complexes 1-6 are dinuclear neutral 
electrolytes in DMF. Each of the two mono deprotonated tridentate arms of the ligand are 
coordinated to one metal ion through one iminolate oxygen atom, one azomethine nitrogen atom 
and one pyridine nitrogen atom. Octahedral geometries are proposed for all the complexes 1-6 

formulated as [(ML)2].nH2O. The structure of the Ni(II) (4) complex is confirmed by X-ray 
crystallography study. 
 

 

Keywords: FTIR; UV-visible; acetylpyridine; succinohydrazide; octahedral; X-ray. 
 

1. INTRODUCTION 
 

The interaction of transition metal ions with 
functionalized ligands is one of the most 
attractive and potentially useful areas of 
coordination chemistry [1–4]. Coordination 
chemistry of transition metals has attracted great 
interest in various fields of science and 
technology [1,5–7]. Ligands containing a 
hydrazone unit have been particularly studied in 
recent years, due to their interesting intrinsic 
properties and their significant chelating capacity 
[8–10]. Thus, these types of ligands are used to 
generate coordination compounds with diverse 
applications [11–14]. These Schiff bases can 
chelate different metal ions forming mononuclear 
[15,16], polynuclear [17,18] or heteropolynuclear 
[19–21] complexes. Dihydrazone ligands that are 
characterized by the presence of two hydrazonic 
groups linked by a spacer constitute good 
polydentate chelating agents that can present in 
several conformations to encapsulate metal ions, 
generating compounds with particular properties 
[22–24]. Thus, compounds with biological 
applications have been reported in the literature 
[25]. Coordination compounds with catalytic [26], 
magnetic [26], antimicrobial [27], antifungal [28], 
antituberculosis [29], and anticancer [30] 
properties are widely studied. Metal complexes 
of dihydrazones are also used in biomimetic 
chemistry for the study of various enzymes [31–
33]. Our team has already synthesized and 
studied the structure of several compounds 
derived from hydrazonic ligands [34–38]. 
Therefore, in the continuity of our research work 
on transition metal complexes, we have 
synthesized a new dihydrazone ligand whose 
two arms are connected by a flexible spacer of 
type –(CH2)4–, which allows it to have a syn or 
anti conformation and a cis or trans 
configuration. This ligand allowed the synthesis 
of six new complexes whose structures are 
determined by a spectroscopic study (FTIR and 
UV-visible) and conductimetric and magnetic 
moments measurements at room temperature of 

the complexes. The structure of the Ni(II) 
complex is confirmed by crystallography. 
 

2. MATERIALS AND METHODS 
 

2.1 Starting materials and Instrumenta-
tions 

 
2-acetylpyridine, succinohydrazide, manganese 
chloride hexahydrate, iron chloride tetrahydrate, 
cobalt chloride hexahydrate, nickel chloride 
hexahydrate, copper chloride dihydrate and zinc 
chloride dihydrate were commercial products 
(from Aldrich) and were used without further 
purifications. The solvents were reagent grade 
and were purified by usual methods. Elemental 
analyses were carried out using a VxRio EL 
Instrument. The FTIR spectra were recorded on 
a FTIR Spectrum Two of Perkin Elmer (4000–
400 cm-1). The UV–Visible spectra were run on a 
Perkin-Elmer UV/Visible spectrophotometer 
Lambda 365 (1000–200 nm). The 1H and 13C 
NMR spectra of the Schiff base were recorded in 
DMSO-d6 on a BRUKER 500 MHz spectrometer 
at room temperature using TMS as an internal 
reference. The molar conductance of 10-3 M 
solutions of the metal complexes in DMF were 
measured at 25 °C using a WTW LF-330 
conductivity meter with a WTW conductivity cell. 
Magnetic measurements for complexes were 
performed at room temperature by using a 
Johnson Mattey scientific magnetic susceptibility 
balance (Calibrant: Hg[Co(SCN)4]).  
 

2.2 Synthesis of the Ligand H2L 
 

In a 250 mL round-bottomed flask containing 30 
mL of methanol, 2 g (13.7 mmol) of 
succinohydrazide were added and the mixture 
was stirred for 30 min before adding 3.31 g (27.4 
mmol) of 2-acetylpyridine. The mixture was 
refluxed for three hours. After cooling, the white 
solid wass recovered by filtration and washed 
with ether (2 x 20 mL), then dried in the open air.  
M.P. 252-254°C. Yield: 89%. 1H NMR (DMSO-d6, 
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δ(ppm)) : 2.32 (s, 6H, -CH3), 3.05 (s, 4H, -CH2), 

7.39 (m, 2H, HAr), 7.79-7.85 (m, 2H, HPy),  8.02-
8.06 (m, 2H, Hpy), 8.58 (s, 1H, O=C-NH), 10.70 

(s, 1H, H-OC=N-). 13C NMR (DMSO-d6, δ (ppm)): 
175.02 (-C=O), 155.64 (C=N), 149.02 (CAr), 
148.037 (-C=Npy), 137.063(CAr), 124.24(CAr), 
120.23(CAr), 27.57(CH2),  12.25 (-CH3). 13C 

NMR{DEPT135} (DMSO-d6, δ(ppm)): 149.03,  
137.06 (CAr), 124.24 (CAr), 120.23 (CAr), 27.71 
(CH2), 12.25 (-CH3).  
 

2.3 Synthesis of the Complexes of H2L 
 

0.106 g (0.3 mmol) of the ligand were introduced 
into a flask containing 25 mL of ethanol and 

0.0252 g (0.6 mmol) of LiOH.H2O. An ethanol 
solution containing 0.6 mmol of transition metal 
chloride salt (M = Mn, Fe, Co, Ni, Cu, Zn) was 
added to the mixture. The mixture was refluxed 
for three hours. After cooling, the solid is 
recovered by filtration and then washed with cold 
ethanol (Table 1). 
 

2.4 X-ray Structure Determination of 
Complex 4 

 
Methanol solution of 4 was left to slow 
evaporation and yellow crystals suitable for X-ray 
analyze were formed after three weeks. The 
details of the X-ray crystal structure solution and 
refinement are given in Table 3. Measurements 
were made on a Bruker SMART CCD Area 
Detector. All data were corrected for Lorentz and 
polarization effects. Empirical absorption 
correction was applied. Complex scattering 
factors were taken from the program package 
SHELXTL [39]. The structures were solved by 
direct methods, which revealed the position of all 
non-hydrogen atoms. All the structures were 
refined on F2 by a full-matrix least-squares 
procedure using anisotropic displacement 
parameters for all nonhydrogen atoms [40]. All 
hydrogen atoms were located in their calculated 
positions and refined using a riding model. The 
contribution of some disordered solvent to the 
scattering was removed using the SQUEEZE 
routine [41] in PLATON. The solvent contribution 
was not included in the reported molecular 
weight and density. Molecular graphics were 
generated using ORTEP-3 [42]. 
 

3. RESULTS AND DISCUSSION 
 

3.1 General Study 
 

The infrared spectrum of the ligand shows in the 
high frequency region, medium intensity bands 

between 3183 cm-1 and 3079 cm-1 which are 

assigned to the N-H stretching vibration of the 
amide moieties. The band at 3010 cm-1 is 

assigned to the aromatic C-H vibration. The 
medium intensity bands between 1570 and 1410 

cm-1 are assigned to the C=C vibrations of the 
aromatic rings. A medium intensities bands 
observed at 1677 cm-1 and 1617 cm-1 were 

attributed, respectively, to the C=O and C=N 
stretching vibrations. The 1H NMR) spectrum 
recorded in dimethyl sulfoxide (DMSO-d6) 
reveals a singlet signal at 10.7 ppm HO-C=N-OH 
and a signal at 8.58 ppm due to O=C-N-H 
showing that in solution, a partial iminolization of 
the ligand occured. The signals pointed between 
7.39 ppm and 8.06 ppm are attributed to the 
protons of the aromatic rings. Two singlets 
pointed at 2.32 ppm and 3.05 ppm are attributed 
to the proton of the methyl groups and the 
methylene groups, respectively. The 13C NMR 
spectrum of the ligand, presents nine signals. 
Comparing the 13C NMR spectrum with that of 
13C{DEPT 135} spectrum, the absence of three 
signals on the 13C{DEPT 135} spectrum which 
were present on the 13C spectrum is observed. 
These signals pointed at 175.017 (C=O), 
155.637 (C=N) and 148.037 ppm (CPy-ipso) are 
due to the tetrasubstituted carbon atoms. The 
signals of the methyl and methylene carbon 
atoms are pointed at 12.254 ppm and 27.570 
ppm, respectively. Four signals, corresponding to 
the tertiary carbon atoms of pyridine rings, are 
pointed at 149.024, 137.063, 124.241 and 
120.232 ppm, respectively. Comparison of the 
FTIR spectrum of the H2L ligand and those of its 

complexes reveals a disappearance of the C=O 
band and a shift towards low frequencies of the 

C=N bands inn the spectra of comples 1-6. A 

second C=N band appears after the iminolization 
of the ligand in solution. This iminolization is 
facilitated by the adding LiOH during the reaction 
to facilitate the deprotonation of the -NH groups 

(Schema 1). Indeed, we point the C=N vibrations 
in the region [1655 cm-1–1636 cm-1] and [1631 
cm-1–1593 cm-1] for complexes 1-6. These data 
confirm the participation of the nitrogen of the 
imine functions in the coordination to the metal 

ion. The vibration attributed to C=N pyridine of 
the pyridine rings is pointed between 1565 cm-1 
and 1597 cm-1 on all the spectra of the 
complexes. For all complexes, the two identical 
arms of the ligand, acts similarly, and 
coordinates to two metal ions through the 
alcoholate oxygen atoms, the azomethine 
nitrogen atoms and the pyridine nitrogen atoms. 
The presence of uncoordinated water molecules 
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is indicated by the νO-H bands located between 
3435 cm-1 and 3555 cm-1 [43]. 
 

3.2 Magnetism 
 
Magnetic study at room temperature                              
has shown that these complexes are                    
binuclear. For the Mn(II) complex (1), the 

magnetic moment value of 11.84 B is consistent 
with a octahedral dinuclear complex without 
exchange between the two high-spin centers of 
d5 configuration [44]. The Fe(II) complex (2) has 

a μeff of 7.16 B. This value is close to the spin-
only value for two non-coupled high-spin iron(II) 
[45]. These two ions are located in an octahedral 
environment. The cobalt complex (3) has two 
high-spin Co(II) ions in octahedral environmment 
which are magnetically isolated as indicated by 

the μeff value of 7.32 B [46]. The magnetic 

moment value (μeff = 5.88 B) of complex (4) 
indicates the presence of two Ni(II) ions in an 
octahedral environment that are magnetically 
isolated from each other [47]. Complex (5) is a 
Cu(II) dinuclear complex without                        

magnetic exchange (μeff = 3.92 B) in which the 
two matal ion are located in octahedral              
geometry [48]. Complex (6) of zinc is 
diamagnetic as expected for a d10 configuration.  
 

3.3 Molar Conductance 
 

All complexes exhibit molar conductivities 

between 5 and 60 Ω-1.cm2.mol-1                                
which indicate that complexes 1-6 have                    
neutral in nature. These values remain                    
almost constant over time, indicating                          
the good stability of the complexes in DMF 
solutions [49].  

 

 
 

Scheme 1. Synthetic procedure of the ligand H2L and its metal transition complexes 
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Table 1. Analytical data, room temperature magnetic moments and conductance of  complexes 1-6 
 

Complexes Yield (%) Color % C  
Calc.  
(Found) 

% H  
Calc. 
(Found) 

% N  
Calc. 
 (Found) 

Λ 

(Ω-1.cm2.mol-1)  

μeff 

(μB) 

H2L 89 White 61.35 
(61.30) 

5.72 
(5.70) 

23.85 
(23.82) 

- - 

[(MnL)2].2H2O (1) 
C36H40Mn2N12O6 

50 Green 51.07  
(51.01) 

4.76  
(4.71) 

19.85  
(19.79) 

55 11.84 

[(FeL)2].4H2O (2) 
C36H44Fe2N12O8 

41 Red 48.88  
(48.83) 

5.01  
(4.98) 

19.00  
(18.93) 

27 7.16 

[(CoL)2].3H2O (3) 
C36H42Co2N12O7 

52 Green 49.55  
(49.51) 

4.85  
(4.83) 

19.26  
(19.21) 

8 7.32 

[(NiL)2].3H2O (4) 
C36H42Ni2N12O7 

49 Yellow 49.58  
(49.55) 

4.85  
(4.81) 

19.27  
(19.22) 

5 5.88 

[(CuL)2].5H2O (5) 
C36H46Cu2N12O9 

36 Green 47.11  
(47.07) 

5.05  
(5.01) 

18.31  
(18.25) 

60 3.92 

[(ZnL)2].2H2O (6) 
C36H40Zn2N12O6 

40 White 49.84  
(49.80) 

4.65  
(4.63) 

19.37  
(19.33) 

5 diam 

 
Table 2. Main FTIR and UV-visible bands for H2L and complexes 1-6 

 

Compound (O-H) (N-H) (N-H) (C=O) (C=N) (C=Npy) (N-N) (nm) 

H2L  3183 3079 1677 - 1617  1579  1045 210, 265, 296 
(1) 3439 - - - 1655 1631 1595 1032 213, 263, 296, 345, 446, 537 
(2) 3446 - - - 1624 1611 1597 1029 208, 261, 295, 342, 395-610 
(3) 3531 - - - 1652 1620 1595 1044 207, 267, 299, 350, 477, 915 
(4) 3459 - - - 1650 1600 1595 1041 213, 266, 295, 348, 425, 814 
(5) 3455 - - - 1658 1613 1596 1033 212, 269, 300, 340, 550-660 
(6) 3439 - - - 1636 1593 1565 1039 208, 265, 298 
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3.4 Electronic Spectra 
 
The electronic spectra data of H2L and the 
complexes 1-6 are shown in Table 2. The 
spectrum of the ligand H2L exhibits three bands 
at 210 nm, 265 nm, and 296 nm which were 

assigned to π→π* transitions. These bands are 
present in the electronic spectra of the 
complexes 1-6. The complexes 1-5 have an 
intense absorption band [340 nm – 350 nm] 
attributable to the metal-to-ligand charge-transfer 
(MLCT) transition. The Mn(II) complex (1) 
exhibits two additional bands at 446 nm and 537 

nm which are assigned to the 6A1g→4T1g and 
6A1g→4T2g transitions, respectively, 
corresponding to octahedral geometry for the 
Mn(II) ion [50]. The Iron complex (2) showed a d-
d transtion at 395-610 nm attributed to the 
2Eg→2T2g for d6 configuration of Fe(II) in an 
octahodral environment [51]. The electronic 
spectrum of the cobalt  complex (3), displays two 
bands at 477 nm and 915 nm, which may 
reasonably be assigned to the 4T1g (F)→4T2g (P) 
and 4T1g (F)→4T2g (F) transitions, respectively, 
suggesting an octahedral geometry around the 
Co(II) ion [52]. The electronic spectrum of the 
nickel  complex (4), shows two bands located at 
425 nm and 814 nm which may be ascribed to 

the 3A2g(F)→3T1g(P) and 3A2g(F)→3T1g(F) 
transitions, respectively indicating an octahedral 
environment [53,54] around the Ni(II) ion. The 
UV-visible spectrum of Cu complex (5) showed a 
broad band in the region 550-660 nm which 

envelops the three  transitions 2B1g→2A1g, 
2B1g→2B2g and 2B1g→2Eg. The broadness of the 
band is propably due due to the Jahn-Teller 
effect [55]. These observations suggest that the 
copper(II) is situated in a distorted octahedral 
environment [56]. On the basis of elemental 
analysis, magnetic moment and conductance 
measurements, UV-Visible spectra and FTIR 
spectra, each molecule of complexes 1-6 
contains two organic ligands acting in 
hexadentate fashion with two metal ions. Each 
metal ion is coordinated by two alcoolate oxygen 
atoms, two nitrogen azomethine atoms and two 
nitrogen atoms from pyridine ring. Uncoordinated 
water molecules are present in the structures of 
the complexes. The suggested structure of the 
complexes are octahedral in nature as shown in 
Scheme 1.  
 

3.5 Description of the Crystal Structure of 
the Complex 4 

 

The molecular structure of the nickel(II) complex 
(4)  is given in Fig. 1. Selected bond lengths and 

angles are listed in Table 4. The nickel(II) 
complex crystallizes in the Pī space group of the 
triclinic system. The asymmetric unit of the 
structure contains two Ni(II) ions and two ligand 
molecules in its L2- form. Each Ni(II) ion of the 
complex (4) is situated in a distorted octahedral 
geometry, having the N4O2 coordination 
environment. The coordination of the Ni(II) ion is 
filled by two O atom of an iminol group, two 
azomethine nitrogen atoms and two nitrogen 
atoms from pyridine rings. In each ligand 
molecule, the flexible alkyl linker chain shows 
syn conformation and the two mono 
deprotonated tridentate arms of the ligand adopt 
a cis configuration. This behavior of the ligand is 
observed in similar Schiff base [57]. The 
structural parameters of the two arms are slightly 
different. The basal planes of the polyhedron 
around the Ni1 and Ni2 ions are occupied by O2, 
N5, N6 and N8 for Ni1 and O4, N2, N10, N11, for 
Ni2 while the apical positions are occupied by O3 
and N7 for Ni1 and O1 and N1 for Ni2. The 
cissoid angles which are in the range [77.64(9)° 
– 107.71(10)°] and the transoid angle 
173.28(10)° and 156.59(9)° for Ni1 and 
174.37(10)° and 155.72(8)° for Ni2, deviate 
severely from the ideal values of 90° and 180°, 
respectively, as expected for a perfect octahedral 
geometry. The angles subtended by atoms in 
apical positions [O3—Ni1—N7 = 154.74(9)° and 
O1—Ni1—N1 = 155.56(8)°] are far from the ideal 
value of 180°. The octahedral environments 
around the Ni1 and Ni2 are severely distorted. 
The sum of the angle subtended by the atoms in 
the basal planes are 360.08° for Ni1 and 360.16° 
for Ni2. Each tridentate arm of the ligand forms 
two five membered rings of type NiNCCN and 
NiNNCO with the Ni. The chelate ring are quite  
planar as shown by the small torsion angles 
(Table 5). The bite angle values resulted are in 
the range [76.68(9)° – 78.61(10)°]. The mean 
planes defined by the atoms which form the two 
six membered ring for each arms of the two 
ligands are quite perpendicular as shown by the 
dihedral angle values of 88.58° for Ni1 
[Ni1/O3/C26/N9/N8/C24/C23/N7 vs 
Ni1/O2/C11/N4/N5/C12/C14/N6] and 87.24° for 
Ni2 [Ni2/O1/C8/N3/N2/C6/C5/N1 vs 
Ni2/O4/C29/N12/N13/C30/C32/N10]. The apical 
bond lengths Ni—O [O3—Ni1 = 2.153(2) Å and 

O1—Ni2 = 2.122(2) Å] are the longest distances 
around these two nickel atoms. The equatorial 
bond lengths Ni—Npy [Ni1—N6 = 2.089(3) Å and 
Ni2—N10= 2.082(2) Å] are longer than the 
equatorial Ni—Nimino distances which are 
1.972(2) Å [Ni1—N5], 2.004(2) Å [Ni1—N8], 

1.982(3) Å [Ni2—N2]  and 1.978(3) Å [Ni2—N11]. 
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These values are close proximity to the values 
reported for the complex bis{N-[1-(pyridin-2-yl-
N)ethylidene]pyridine-4-carbohydrazonato-
k2N’,O}nickel(II)–2,5-dichloroterephthalic acid 
[58]. The distance Ni—Ni value is 5.991(2) Å. 
The distances C—O [O1—C8 = 1.252(4) Å, O4—

C29 = 1.257(4) Å, O3—C26 = 1.241(3) Å, O2—

C11 = 1.266(3) Å] and C—N [C8—N3 = 1.357(4) 
Å, C29—N12 = 1.342(3) Å, C26—N9 = 1.364(3) 

Å, C11—N4 = 1.339(4) Å] are compatible to the 
values reported with similar ligand [59]. 

 

 
 

Fig. 1. Crystal structure of the complex (4). Displacement ellipsoids are drawn at the 30% 
probability level and H atoms are omitted for clarity 

 
Table 3. Crystallographic data and refinement parameters for complex 4 

 

Chemical formula C36H36N12Ni2O4 

Mr 818.15 

Crystal system, space group Triclinic, Pī 

Temperature (K) 173 

a, b, c (Å) 10.647 (2), 14.030 (3), 18.077 (4) 

α, β, γ (°) 69.33 (3), 86.34 (3), 70.01 (3) 

V (Å3) 2369.3 (11) 

Z 2 

Radiation type Mo Kα 

µ (mm−1) 0.84 

Crystal size (mm) 0.40 × 0.30 × 0.20 

No. of measured, independent and 
observed [I > 2σ(I)] reflections 

74467, 9777, 8735  

Rint 0.035 

R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.174, 1.04 

No. of reflections 9777 

No. of parameters 491 

H-atom treatment H-atom parameters constrained 

Δρmax, Δρmin (e Å−3) 0.62, −0.89 
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Table 4. Selected bond lengths (Å) and bond angles (°) of complex 4 

 
Ni1—N5 1.971 (2) N5—Ni1—N8 173.28 (10) 
Ni1—N8 2.004 (3) O2—Ni1—N6 156.59 (9) 
Ni1—N7 2.069 (3) N7—Ni1—O3 154.74 (9) 
Ni1—O2 2.070 (2) N5—Ni1—N7 99.35 (10) 
Ni1—N6 2.089 (3) N8—Ni1—N7 78.08 (10) 
Ni1—O3 2.153 (2) N5—Ni1—O2 78.12 (9) 
Ni2—N11 1.977 (2) N11—Ni2—N2 174.37 (10) 
Ni2—N2 1.982 (2) N10—Ni2—O4 155.72 (8) 
Ni2—N10 2.082 (3) N1—Ni2—O1 155.56 (8) 
Ni2—N1 2.082 (2) N11—Ni2—N10 78.20 (9) 
Ni2—O4 2.105 (2) N2—Ni2—N10 106.72 (10) 
Ni2—O1 2.122 (2) N11—Ni2—N1 98.78 (9) 

 
Table 5. Selected torsion angles (°) in complex 4 

 
Ni1–O2–C11–N4 1.7(4) 
Ni1–N5–C12–C14 0.6(3) 
Ni1–N7–C23–C24 6.0(3) 
Ni1–O3–C26–N9 -2.8(3) 
Ni1–N5–N4–C11 -2.3(3) 
Ni1–N6–C14–C12 0.4(3) 
Ni1–N8–C24–C23 -0.5(3) 
Ni1–N8–N9–C26 -0.3(3) 
Ni2–N10–C32–C30 1.4(3) 
Ni2–N11–C30–C32 7.9(3) 
Ni2–N11–N12–C29 -3.8(3) 
Ni2–O4–C29–N12 -0.8(4) 
Ni2–N1–C5–C6 -4.5(3) 
Ni2–N2–C6–C5 -2.2(4) 
Ni2–N2–N3–C8 4.1(3) 
Ni2–O1–C8–N3 -2.7(4) 

 
4. CONCLUSION 
 

The new ligand N’1, N’4-bis(1-(pyridin-2-
yl)ethylidene)succinohydrazide was 
synthetized  and structurally characterized. 
The ligand was used for chelation with metal 
ions with Mn(II), Fe(II), Co(II), Ni(II), Cu(II) 
and Zn(II) ions. The complexes are 
characterized by FTIR and UV-visible 
spectroscopies, room temperature magnetic 
moments measurements, conductivity 
measurement and X-ray diffraction for the 
Ni(II) complexes. The ligand acts as 
dinegative hexadentate in the all the 
complexes. In each complex two ligand 
molecules coordinate two metal ions. Each 
ligand possesses two arms which coordinates 
one metal ion in tridentate fashion trough one 
azomethine nitrogen atom, one pyridine 
nitrogen atom and one iminolate oxygen 
atom. Octahedral geometries are proposed 
for the complexes 1-6. 
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