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ABSTRACT 
 

This study investigates the vulnerabilities of unmanned aerial vehicles (UAVs) to GPS spoofing and 
jamming, addressing three key research questions: (1) What are the common techniques used to 
spoof or jam GPS signals for UAVs? (2) How do these techniques impact UAV performance and 
safety? (3) What mitigation strategies are most effective in preventing interference? A mixed-
methods approach was used, combining a qualitative review of peer-reviewed literature and a 
quantitative analysis of GPS signal data. Spoofing increased positioning errors to 20.45 meters, 
while jamming reduced mission completion rates by 40%. Detection models, including Random 
Forest, SVM, and Neural Networks, were evaluated, with SVM showing a recall of 56.4% for 
spoofed signals despite lower overall accuracy. Inertial Navigation Systems (INS) and Visual 
Odometry were most effective in reducing navigation errors by over 90% and showed the highest 
mission success rates, recovering from interference within 0.81 to 1.28 seconds. These findings 
highlight the importance of integrating advanced detection methods and resilient systems in GPS-
reliant UAV operations. 
 

 

Keywords: GPS spoofing; UAV interference; mixed-method analysis; multi-sensor fusion; anti-
jamming strategies. 

 

1. INTRODUCTION 
 

Unmanned aerial vehicles (UAVs) have become 
critical in sectors such as military operations, 
logistics, infrastructure monitoring, and 
emergency services due to their reliance on 
Global Positioning System (GPS) technology for 
navigation and mission execution. However, this 
reliance increases UAVs’ vulnerability to 
interference, specifically GPS spoofing and 
jamming, which mislead or disable the GPS 
receiver, potentially causing mission failure [1]. 
Historical incidents, such as the disruption of 
drone surveillance during the 2017 Venezuelan 
presidential election, demonstrate the risks 
posed by malicious actors exploiting UAV 
vulnerabilities in sensitive contexts [2]. GPS 
interference is not only a concern for military 
UAVs, where jamming exercises are often 
conducted in electronic warfare simulations [3], 
but it also presents increasing challenges in 
civilian applications, where UAVs are used for 
infrastructure inspections, border surveillance, 
and environmental monitoring. 
 

In both military and civilian sectors, GPS 
interference leads to operational failures, safety 
risks, and disruptions in sectors dependent on 
reliable navigation. Incidents near airports have 
caused delays and temporary closures, 
highlighting the risks of GPS interference in 
civilian contexts [4][5]. Military and government 
agencies have advanced technologies and 
secure GPS protocols to counter these threats, 
yet the commercial sector has been slower to 
adopt robust detection and mitigation techniques 
[6]. As attackers become more sophisticated, 
GPS spoofing can generate false signals that 

cause UAVs to stray into restricted areas or miss 
key mission waypoints, while jamming disrupts 
entire mission operations. 

 

GPS interference poses significant risks in 
national security and disaster response, as UAVs 
are increasingly used for border protection, 
surveillance, and emergency interventions [7]. 
Commercial risks include equipment failures in 
infrastructure monitoring, misdelivered packages, 
and potential casualties, all of which underscore 
the need for improved detection and mitigation 
strategies [7]. While military advancements in 
detecting interference are more developed, the 
commercial sector must prioritize real-time 
detection techniques, such as machine learning 
and signal integrity checks, to prevent significant 
disruptions [8]. UAVs must adopt alternative 
navigation systems like inertial navigation or 
visual odometry to remain resilient in GPS-
compromised environments [9]. This study aims 
to evaluate detection and mitigation techniques 
to protect autonomous UAVs from GPS spoofing 
and jamming, with the following objectives: 

 

1. Identify and analyze common techniques 
used to spoof or jam GPS signals for 
UAVs. 

2. Assess the impact of GPS spoofing and 
jamming on UAV performance and safety. 

3. Evaluate the effectiveness of various 
mitigation strategies, including signal 
authentication, jamming mitigation, and 
autonomous decision-making. 
 

The research questions are: 
 

1. What are the common techniques used to 
spoof or jam GPS signals for UAVs?  
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2. How do these techniques impact UAV 
performance and safety?  

3. What mitigation strategies are most 
effective in preventing interference 
 

2. LITERATURE REVIEW 
 

GPS spoofing and jamming exploit the reliance 
of autonomous unmanned aerial vehicles (UAVs) 
on GPS systems, severely disrupting navigation, 
timing, and control. These attacks, especially in 
high-risk environments, can significantly 
compromise UAV performance [3]. Mohsan et al. 
[10] state that UAVs’ dependence on continuous 
GPS signals for accurate positioning means 
interference can lead to critical operational 
failures. Yu et al. [11] explain that GPS spoofing 
transmits false signals to deceive the UAV into 
accepting inaccurate location data, causing it to 
misjudge its position and leading to disorientation 
or misdirection [3][12]. Conversely, jamming 
overwhelms the GPS receiver with noise, 
rendering the UAV unable to process legitimate 
signals, disabling autonomous navigation, and 
leaving it vulnerable to accidents or capture by 
adversaries [13][14]. Osmani and Schulz [15] 
argue that heavy reliance on GPS, without 
effective backup systems, represents a 
fundamental weakness, particularly in long-
distance missions. 

 

Incidents like the 2018 Venezuelan presidential 
election highlight the dangers of GPS 
interference, where UAV operations were 
disrupted by suspected jamming, leading to 
signal loss and raising security concerns [2][16]. 
Mohsan et al. [10] also note that military training 
exercises demonstrate how easily adversaries 
can use spoofing to divert UAVs from their 
intended paths, causing mission failures or 
premature landings. Lyu and Zhan [17] 
emphasize that GPS interference in military 
settings, where UAVs are crucial for 
reconnaissance and combat, can disrupt 
communication between UAVs and control 
centers, further complicating operations. As 
attacks become more sophisticated, the need for 
resilient UAV systems becomes urgently 
expedient. 
 

Arafat et al. [18] report ongoing research into 
alternative navigation systems to reduce UAVs’ 
dependence on GPS, with multi-sensor 
navigation, integrating inertial measurement units 
(IMUs) and visual odometry, offering one 
potential solution. These systems can help UAVs 
maintain accuracy without GPS signals, although 
Mohsan et al. [10] highlight challenges such as 

increased costs, weight, and computational 
demands. Despite innovations, UAV vulnerability 
to GPS spoofing and jamming remains a 
pressing issue, requiring further development of 
robust defense mechanisms [19][20]. 
 

2.1 Techniques for GPS Spoofing and 
Jamming 

 
The techniques for GPS spoofing and jamming 
have advanced significantly, evolving from basic 
methods to sophisticated tools that now pose 
serious threats to satellite-based navigation 
systems. GPS spoofing involves transmitting 
falsified signals to deceive systems into 
interpreting incorrect data. A common approach, 
as described by Giannaros et al. [21], is signal 
replay, where previously recorded GPS signals 
are retransmitted to mislead the system into 
believing it is in a different location or time. More 
advanced techniques generate fake satellite 
signals that mimic legitimate transmissions, 
misleading even sophisticated receivers. 
Alalwany and Mahgoub [22] argue that these 
advanced devices exploit GPS protocol 
weaknesses, allowing attackers to introduce 
gradual deviations in location data, making 
detection increasingly challenging. 
 
In contrast, GPS jamming disrupts signal 
reception by overwhelming the receiver with 
noise. Jamming methods vary from wide-band 
jamming, which floods the frequency spectrum, 
to narrow-band jamming, which targets specific 
GPS frequencies [23][25]. Narrow-band jamming 
is particularly effective, as Wang and Zhou [24] 
explain, because it minimizes disruption to other 
signals. Recent advancements in jamming 
devices include noise that closely resembles 
satellite transmissions, further complicating 
detection. Rados et al. [27] highlight how 
sophisticated jammers exploit variations in 
satellite signal strength, adapting in real-time to 
GPS environments. 
 
The progression of GPS interference has been 
driven by advancements in electronics and 
software-defined radios (SDRs). Early jammers 
emitted broad-spectrum noise to overpower 
receivers, but technological advancements have 
made jamming devices more precise and 
customizable, widely accessible even to non-
state actors [28][29][26]. This democratization 
increases the likelihood of disruption in civilian 
and military operations. Burbank et al. [3] note 
that the convergence of jamming and spoofing 
technologies has led to multi-functional devices 
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capable of both disabling and manipulating GPS 
systems, significantly amplifying the threat. 
 
Advanced spoofing techniques now generate 
counterfeit GPS signals that closely mimic 
legitimate transmissions, providing attackers 
greater control over the spoofed location and 
trajectory [30][31]. Furthermore, advancements 
in software and signal processing allow these 
devices to adapt to environmental conditions and 
countermeasures, complicating defense efforts 
[32][33]. 
 

2.2 Impact of GPS Interference on 
Autonomous UAVs Across Different 
Sectors 

 
The impact of GPS interference on autonomous 
UAVs is profound in both military and civilian 
sectors. In military operations, UAVs are critical 
for surveillance, reconnaissance, and precision 
strikes, but their dependence on GPS makes 
them highly vulnerable to spoofing and jamming. 
Yaacoub and Salman [34] report that adversarial 
forces have used GPS jamming to disable 
military drones, disrupting surveillance and 
compromising intelligence gathering. Such 
interference can result in mission failures, 
jeopardizing assets, and exposing military forces 
to danger. GPS spoofing, which alters a UAV's 
perceived location, further threatens military 
operations by misleading forces and creating 
vulnerabilities in defense strategies, particularly 
in conflict zones where GPS is essential for 
coordination [30][34]. 
 
This vulnerability extends to civilian sectors 
where UAVs are used for infrastructure 
monitoring, environmental assessments, and 
logistics. Mohsan et al. [6] note that UAVs 
monitoring power lines, pipelines, and bridges 
are particularly susceptible to GPS jamming, 
which can interrupt data collection and 
compromise safety. Rejeb et al. [35] suggest that 
GPS interference can prevent UAVs from 
gathering accurate environmental data or 
reaching key areas, while Gamba et al. [36] 
contend that such interference can disrupt drone 
deliveries, causing delays, losses, or accidents. 
Sadaf et al. [37] argue that GPS spoofing in 
border surveillance may create gaps, allowing 
unauthorized crossings to go undetected. 
 
The economic and operational consequences of 
GPS interference are considerable. AlRushood 
et al. [38] explain that commercial industries face 
financial losses from delayed deliveries, 

damaged drones, and supply chain disruptions. 
Omolara et al. [39] emphasize that compromised 
infrastructure monitoring can lead to missed 
structural issues or equipment malfunctions, 
increasing inefficiencies and operational costs 
while undermining public trust in UAV 
technologies. Chamola et al. [40] add that GPS 
disruptions can cause UAVs to lose control, 
leading to collisions, accidents, or property 
damage, particularly in sectors reliant on time-
sensitive tasks such as logistics, where 
misdelivered packages can affect essential 
services. 
 

2.3 Current Detection Techniques for 
GPS Spoofing and Jamming 

 

Current detection techniques for GPS spoofing 
and jamming have evolved to address the 
increasing complexity of interference methods 
targeting autonomous UAVs. One prominent 
approach is statistical analysis-based detection, 
which identifies anomalies in GPS signals by 
examining characteristics like signal strength, 
timing, and frequency [41][42]. These methods 
are valuable for real-time detection due to their 
immediate data processing capabilities. 
However, Fascista [43] points out the challenge 
of distinguishing between deliberate interference 
and natural anomalies, stressing the need to 
combine statistical methods with other 
techniques for enhanced reliability. 
 

Machine learning has emerged as a powerful tool 
for detecting GPS interference. Rados et al. [27] 
note that algorithms trained on large GPS signal 
datasets can detect patterns linked to spoofing 
and jamming, with deep learning models 
particularly effective for identifying complex 
interference methods. Machine learning’s 
adaptability, as Bello et al. [44] argue, lies in its 
ability to improve with more data, though its need 
for extensive training data and high 
computational resources limits its real-time use in 
resource-constrained UAVs. 
 

Signal integrity checks add another detection 
layer by examining the structure, consistency, 
and cryptographic features of GPS signals 
[45][46]. Rados et al. [27] contend that 
cryptographic authentication can verify signal 
authenticity and detect spoofing by identifying 
inconsistencies, though civilian GPS signals 
remain vulnerable due to weak encryption. Hoffer 
et al. [47] argue that resolving this vulnerability 
requires infrastructure upgrades, such as 
implementing cryptographic authentication, which 
may not be feasible in the short term. 
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Burbank et al. [3] assert that no single technique 
offers full protection against GPS spoofing and 
jamming, making a multi-layered approach 
essential. Combining statistical analysis, 
machine learning, and signal integrity checks, as 
Nankya et al. [48] suggest, provides a more 
robust defense by compensating for each 
method’s weaknesses. However, integrating 
these systems into UAVs is limited by processing 
power, weight, and energy constraints [49][50]. 
 

2.4 Mitigation Strategies for GPS 
Spoofing and Jamming 

 
Wu et al. [51] argue that embedding 
cryptographic methods in satellite transmissions 
protects against spoofing by requiring receivers 
to authenticate signals. However, Serrano [52] 
notes that retrofitting existing GPS infrastructure, 
which operates on open signals, remains a 
challenge and will require collaboration between 
industry and governments to update protocols for 
both civilian and military systems. 
 
Another strategy is the use of jamming-resistant 
technologies like frequency hopping and spread 
spectrum techniques [53][54]. Frequency 
hopping switches between multiple frequencies 
during transmission, while spread-spectrum 
distributes the signal over a wider band, making 
jamming more difficult. Felli et al. [55] highlight 
their effectiveness for military UAVs, where 
security is paramount. However, these methods 
require increased power consumption and 
specialized hardware, limiting their application in 
commercial UAVs. Castrillo et al. [56] note that 
while anti-jamming technologies are advancing, 
their complexity and cost remain barriers, 
particularly for smaller UAVs with constrained 
energy resources. 
 
Secure communication protocols are also 
essential for mitigating GPS interference, 
focusing on ensuring secure transmission of 
navigation and control signals. Data encryption 
and integrity checks prevent unauthorized 
tampering. Chamola et al. [40] suggest that 
secure protocols across UAV networks maintain 
functionality during jamming attacks, though 
issues related to encryption key management 
and latency still need to be addressed. 
 
Alternative navigation systems, such as inertial 
navigation systems (INS) and visual odometry, 
further strengthen UAV resilience against 
interference. INS uses gyroscopes and 
accelerometers to calculate position based on 

movement, while visual odometry estimates 
motion using camera inputs. Lee et al. [57] note 
both systems are effective in GPS-denied 
environments, though INS can drift over time, 
and visual odometry is sensitive to conditions like 
low light. Xu et al. [58] argue that combining INS 
and visual odometry with GPS offers the most 
robust solution, though the complexity and cost 
of integration  
 

2.5 Comparison of Detection and 
Mitigation Techniques 

 
Detection and mitigation techniques for GPS 
spoofing and jamming differ significantly between 
military and commercial applications due to 
varying levels of threat, resources, and 
operational needs. In military contexts, UAVs 
play a critical role in defense, intelligence, and 
combat operations, where security is paramount. 
Felux et al. [4] note that military UAVs employ 
advanced systems such as frequency hopping 
and spread spectrum technologies to defend 
against jamming. These methods, while effective, 
require specialized hardware and secure 
communication protocols. Rados et al. [27] also 
highlight cryptographic signal authentication, a 
method rarely found in commercial systems due 
to cost constraints. 
 
In contrast, commercial UAVs, used in industries 
such as infrastructure monitoring, logistics, and 
agriculture, tend to rely on less advanced 
detection systems and are more vulnerable to 
interference [40][59]. Gamba et al. [36] argue 
that these UAVs often depend on standard GPS 
systems that lack the sophisticated anti-jamming 
and spoofing technologies found in military 
applications. Cost remains a significant factor, as 
commercial operators must balance security with 
affordability. Rados et al. [27] explain that 
commercial systems generally adopt basic 
strategies, such as statistical anomaly detection, 
which may struggle to distinguish between 
harmless anomalies and genuine threats. 
 
A cost-benefit analysis highlights trade-offs in 
adopting advanced technologies, especially for 
commercial operators. While cryptographic signal 
verification and frequency hopping offer strong 
protection, Rados et al. [27] argue that their 
financial and resource costs make them 
impractical for many commercial applications, 
particularly for smaller operators. Additionally, 
increased power consumption and weight are 
concerns for UAVs with limited energy resources. 
Adnan et al. [60] suggest that although these 



 
 
 
 

Joeaneke et al.; J. Eng. Res. Rep., vol. 26, no. 10, pp. 71-92, 2024; Article no.JERR.124341 
 
 

 
76 

 

costs may be justified in high-risk sectors, the 
broader market typically favors more affordable 
solutions. 
 

Combining detection and mitigation techniques is 
critical for both sectors. In military settings, Lee 
et al. [57] note that combining inertial navigation 
systems (INS), signal authentication, and spread 
spectrum techniques is feasible due to greater 
resources. However, in commercial settings, Xu 
et al. [58] suggest that hybrid systems like INS, 
visual odometry, and basic signal integrity 
checks offer a practical, though less secure, 
alternative without costly cryptographic 
technologies. 
 

This disparity underscores the challenge of 
balancing security and cost-effectiveness in UAV 
operations. While military UAVs benefit from 
advanced defense strategies, commercial 
sectors face financial constraints, driving the 
need for affordable solutions [61]. Computational 
limitations also pose challenges, as many 
commercial UAVs lack the processing power for 
advanced detection algorithms, leading to false 
positives and disruptions [62][63]. Regulatory 
gaps further complicate the issue, with 
inconsistent GPS security guidelines across 
industries [64][65]. 
 

Michaelides-Mateou [64] observes that agencies 
such as the FAA and EASA currently operate 
reactively rather than preventively. A promising 
approach, according to Behiry and Aly [66], is 
enhancing machine learning-based systems that 
adapt to evolving interference techniques while 
reducing false positives. Yanakiev et al. [67] 
argue that cross-sector collaboration is essential 
for developing unified GPS security standards 
applicable to both military and commercial UAVs. 
Cheng and Li [68] conclude that technological 
advancements, regulatory reform, and 
collaboration will be key to addressing GPS 
interference challenges and ensuring reliable 
UAV operations.  
 

2.6 Gap in the Literature 
 

Despite advancements in GPS technologies and 
UAV applications, the literature reveals 
significant gaps in robust, cost-effective solutions 
for mitigating GPS spoofing and jamming, 
particularly in the commercial sector. Current 
studies primarily focus on military applications, 
where sophisticated and expensive anti-jamming 
techniques, such as cryptographic methods and 
multi-sensor fusion, are more feasible. However, 
there is a lack of affordable, scalable solutions 

for civilian UAVs used in industries such as 
infrastructure monitoring, logistics, and 
environmental assessment. Additionally, while 
machine learning has been explored for 
detecting interference, there is limited research 
on the practical implementation of these 
algorithms in real-time UAV systems with 
constrained resources. This paper addresses 
these gaps by evaluating a range of detection 
and mitigation techniques for both military and 
commercial UAVs, focusing on affordable yet 
effective solutions like machine learning models 
and inertial navigation systems 
 

3. METHODOLOGY 
 
This study employed mixed methods to identify 
and analyze common GPS spoofing and 
jamming methods.  
 
A. In addressing research objective 1, a 
comprehensive literature review of peer-reviewed 
journals, conference papers, and case studies, 
focusing on interference techniques (replay 
attacks, meaconing, and jamming) was 
conducted. A meta-analysis was then used to 
quantify the prevalence of these techniques and 
evaluated mitigation strategies, including 
cryptographic methods, machine learning, and 
multi-sensor fusion. In the quantitative phase, 
GPS signal data from GPS-SDR Sim was utilized 
to simulate normal, spoofed, and jammed GPS 
signals. The normal GPS signal was modeled as 
a sine wave, expressed by the equation: 
 

𝑆 (𝑡) =  sin(2𝜋𝑓𝑡) 
 
Where f represents the frequency of the GPS 
signal and t denotes time. 
 
For the spoofed signal, a phase shift was 
introduced to simulate a time synchronization 
attack, modifying the equation to: 
 

𝑆 (𝑡) =  sin(2𝜋𝑓𝑡 =  𝜑) 
 
where 𝜑  represents the phase shift caused by 
the spoofing attack. 
 
For the jammed signal, noise was added to the 
sine wave, leading to the following equation: 
 

𝑆 (𝑡) =  sin(2𝜋𝑓𝑡) + 𝑁 (𝑡) 
 

where N(t) is the noise function representing the 
interference introduced by jamming. 
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Once the signals were simulated, a Fast Fourier 
Transform (FFT) was applied to each signal to 
examine its frequency components. The FFT 
transforms a time-domain signal into the 
frequency domain, represented mathematically 
as: 
 

𝐹 (𝑓) =  ∫ 𝑆 (𝑡)𝑒−2𝜋𝑖𝑓𝑡𝑑𝑡
∞

−∞

 

 

Where: 

• F(f) is the frequency-domain representation 
of the signal, 

• S(t) is the time-domain signal (e.g., your 
normal, spoofed, or jammed GPS signal), 

• f is the frequency, 

• t is time, 

• 𝑒−2𝜋𝑖𝑓𝑡  is the complex exponential function 
that projects the signal onto its frequency 
components. 

 
B. For research objective three, a thematic 
analysis of relevant studies was combined with a 
quantitative assessment of real-world data to 
evaluate the impact of GPS interference on UAV 
operations. Key performance indicators were 
derived from GPS data under three conditions: 
normal, spoofed, and jammed signals. These 
indicators included: 

 

• Positioning Error (m) Calculated using the equation: 
 

𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑖𝑛𝑔 𝐸𝑟𝑟𝑜𝑟 =  √(𝑥𝑎𝑐𝑡𝑢𝑎𝑙 − 𝑥𝑖𝑛𝑡𝑒𝑛𝑑𝑒𝑑)2 +  (𝑦𝑎𝑐𝑡𝑢𝑎𝑙 − 𝑦𝑖𝑛𝑡𝑒𝑛𝑑𝑒𝑑)2 +  (𝑍𝑎𝑐𝑡𝑢𝑎𝑙 − 𝑍𝑖𝑛𝑡𝑒𝑛𝑑𝑒𝑑)2 
 

Where: 
 

x,y, and z are the coordinates of the actual and intended positions in 3D space. 
 

• Mission Completion Rate (%):  
 

𝑀𝑖𝑠𝑠𝑖𝑜𝑛 𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑖𝑜𝑛 𝑅𝑎𝑡𝑒 (%) =  (
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑆𝑢𝑐𝑐𝑒𝑠𝑠𝑓𝑢𝑙 𝑀𝑖𝑠𝑠𝑖𝑜𝑛𝑠

𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑀𝑖𝑠𝑠𝑖𝑜𝑛𝑠
) × 100 

 

• Recovery Time (s): Measured as the time between interference detection and navigation 
stabilization: 
 

𝑅𝑒𝑐𝑜𝑣𝑒𝑟𝑦 𝑇𝑖𝑚𝑒 (𝑠) = 𝑡𝑟𝑒𝑐𝑜𝑣𝑒𝑟 − 𝑡𝑖𝑛𝑡𝑒𝑟𝑓𝑒𝑒𝑛𝑐𝑒  

 

Descriptive statistics such as mean (μ) and standard deviation (σ) were calculated: 
 

𝑀𝑒𝑎𝑛 (𝜇) =  
1

𝑛 
∑ 𝑥𝑖

𝑛
𝑖=1   AND 𝑆𝐷 (𝜎) =  √

1

𝑛
  ∑ (𝑥𝑖 −  𝜇)2𝑛

𝑖=1  

 

C. Machine learning models were developed to distinguish between normal, spoofed, and jammed 
GPS signals using signal characteristics like signal strength, Doppler shift, and time delay. The 
dataset was split into training and testing sets, and class weights were adjusted to address class 
imbalance. Three machine learning algorithms—Random Forest, SVM, and Neural Network—were 
evaluated. 
 

Key performance metrics were calculated as follows: 
 

Accuracy: 
 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑖𝑣𝑒𝑠 + 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
 

 

Precision: 
 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 
 

Recall: 
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𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑓𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 
 

 

F1-Score: 
 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 2 × 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

 

Cross-Validation: 
 

𝐶𝑉 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
1

𝑘
∑ 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑖

𝑘

𝑖=1

 

 

Where k is the number of cross-validation folds, and Accuracyi is the accuracy for fold i 
 

Anomaly detection was performed using the Z-Score: 
 

𝑍 =  
𝑥 −  𝜇

𝜎
 

 

Where x is the data point, μ is the mean, and σ is the standard deviation 
 

and Principal Component Analysis (PCA) for dimensionality reduction, expressed as: 
 

𝑍 = 𝑋𝑊  
 

Where X is the original data matrix and W is the eigenvector matrix. 
 

The Receiver Operating Characteristic (ROC) curve and Area Under the Curve (AUC) were used 
to assess model performance: 
 

𝐴𝑈𝐶 =  ∫ 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒 𝑑(𝐹𝑎𝑙𝑠𝑒 𝑃𝑠𝑜𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒)
1

0

 

 

Where: 
 

True Positive Rate (TPR) is:  
 

𝑇𝑃𝑅 =  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 
 

 

False Positive Rate (FPR) is: 
 

𝐹𝑃𝑅 =  
𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 
 

 

D. To address research objective three, the effectiveness of four mitigation strategies—Signal 
Authentication, Jamming Mitigation, Inertial Navigation Systems (INS), and Visual Odometry—was 
evaluated using key performance metrics such as mission success rate, recovery time, and error 
reduction. The recovery time from interference was measured as the time between the detection of 
interference and the stabilization of navigation. These metrics were compared using the ANOVA test 
to assess statistical significance, represented by: 
 

𝐹 =  
𝑀𝑆𝐵

𝑀𝑆𝑊
 

 
MSB is the mean square between groups, and MSW is the mean square within groups. 
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4. RESULTS  
 

Based on the qualitative analysis conducted, the 
most frequent spoofing methods identified were 
replay attacks, meaconing, false signal injection, 
and time synchronization attacks. These 
techniques manipulate GPS signals to mislead 
UAVs, causing them to navigate incorrectly, as 
demonstrated in studies of Novák et al. [69] and 
Kassas et al. [70]. Common techniques for 
jamming include narrowband, broadband, 
pulsed, and swept jamming, which overwhelm 
GPS receivers by flooding frequency bands and 
degrading signal quality. Ferreira et al. [71] and 
Van den Bergh et al. [72] emphasized how these 
methods disrupt UAVs' ability to obtain accurate 
GPS coordinates. 
 

Mitigation strategies, including cryptographic 
methods, multi-sensor fusion, machine learning-
based detection, and anti-jamming antennas, 
were discussed across various studies. These 
strategies varied in effectiveness in detecting and 
preventing interference. Table 1 summarizes the 
frequency of these techniques and the 
effectiveness of mitigation strategies across 
studies. 
 

Table 1 demonstrates that the most frequently 
studied spoofing technique was replay attacks, 
while narrowband and broadband jamming were 

the most common forms of interference. Machine 
learning and cryptographic methods were among 
the most effective strategies in mitigating these 
attacks, with detection effectiveness rates 
reaching as high as 90% in certain studies. 

 
Fig. 1 shows the time-domain representation of 
the normal, spoofed, and jammed GPS signals. 
The normal GPS signal is a clean sine wave, 
indicating stable and accurate reception. In 
contrast, the spoofed signal, with its slight phase 
shift, mimics the effect of time synchronization or 
false signal injection attacks, where the receiver 
is tricked into accepting an altered GPS signal. 
The jammed signal, filled with noise, 
demonstrates how jamming disrupts the 
frequency band, preventing the receiver from 
locking onto a valid signal. 

 
Fig. 2 presents the frequency spectrum of the 
normal, spoofed, and jammed signals. The 
normal signal shows a distinct peak, representing 
the stable frequency components of the original 
GPS signal. The spoofed signal, while similar, 
exhibits a slight shift in the frequency peak, 
reflecting the altered signal's phase. The jammed 
signal, on the other hand, displays a broad range 
of frequency components with significant noise, 
highlighting the interference introduced by 
jamming. 

 

 
 

Fig. 1. Time-domain representation of (a) normal GPS signal, (b) spoofed GPS signal, and (c) 
jammed GPS signal 
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Fig. 2. Frequency-domain (Fourier Transform) representation of (a) normal GPS signal, (b) 
spoofed GPS signal, and (c) jammed GPS signal 

 
These results confirm that GPS spoofing causes 
subtle alterations to the signal, leading to 
inaccurate positioning, while jamming introduces 
broad-spectrum noise that completely disrupts 
the signal. 

 
The thematic analysis aimed to assess the 
potential impact of GPS spoofing and jamming 
on the performance and safety of autonomous 
UAVs based on positioning errors, navigation 
drift, and mission failures due to GPS spoofing 
and jamming highlighted several significant 
threats to UAV performance and safety, as 
shown in Table 2. 

 
Studies like Novák et al. [69] reported positioning 
errors of up to 20 meters under GPS spoofing, 
leading to significant control issues. Similarly, 
Ferreira et al. [71] documented a 40% reduction 
in mission success under jamming, while Van 
den Bergh and Pollin [72] highlighted navigation 
drift of 15-25% under jamming conditions. The 
analysis also emphasized safety risks, with 
Ranyal and Jain [80] showing that 25% of cases 
resulted in UAV control loss due to spoofing. 

These insights provided a foundation for the 
metrics used in the quantitative analysis. 
 

Data and Key Metrics: The quantitative study of 
GPS interference by analyzing UAV performance 
under three conditions: normal, spoofed, and 
jammed, revealed that for Positioning Error, 
under normal conditions, UAVs maintained a low 
error of 0.95 meters. 
 

However, under spoofed conditions, the error 
increased to 15.11 meters, reflecting navigation 
drift similar to that reported by Gaspar et al. [78]. 
Under jammed conditions, the error worsened to 
20.45 meters, consistent with the findings of Van 
den Bergh and Pollin [72] as illustrated in Figs. 3 
and 4. 
 

Mission Completion Rate and Safety 
Concerns: The Mission Completion Rate (Fig. 5) 
decreased under both spoofed and jammed 
conditions, aligning with qualitative findings. 
Ferreira et al. [71] reported a 40% mission failure 
rate under jamming, which corresponds to the 
analyzed results showing a completion rate drop 
to 58.27% in jammed conditions. 
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Table 1. Frequency of different techniques and the effectiveness of mitigation strategies across studies 
 

Paper Spoofing Frequency Jamming Frequency Detection Effectiveness (%) Mitigation Strategy 

Ala Altaweel et al. [73] 12 8 85 Cryptographic Methods 
Novák et al. [69] 10 7 88 Multi-Sensor Fusion 
Basan et al. [74] 9 9 80 SDR-Based Detection 
Ferreira et al. [71] 11 10 90 Machine Learning 
Panice et al. [75] 8 5 75 Machine Learning 
Gaspar et al. [78] 7 6 82 SDR-Based Detection 
He et al. [76] 5 4 65 Cryptographic Methods 
Kassas et al. [70] 6 5 70 Multi-Sensor Fusion 
Talaei Khoei et al. [77] 4 7 78 Anti-Jamming Antennas 
Van den Bergh et al. [72] 6 8 85 Machine Learning 

 

Table 2. Summary of key findings from the literature on the impact of GPS interference on UAV performance and safety. 
 

Study Key Metrics Findings Impact on UAV Performance 
Novák et al. [69] Positioning Error Positioning errors increased by up to 20 meters under GPS 

spoofing. 
Significant deviation from planned routes. 

Gaspar et al. [78] Positioning Error Similar errors observed; 15-20 meters deviation under GPS 
spoofing attacks. 

Loss of navigation accuracy and control. 

Van den Bergh and 
Pollin [72] 

Navigation Drift 15% to 25% navigation drift in jamming scenarios. UAV strayed off course due to jamming 
interference. 

Ferreira et al. [71] Mission Completion 
Rate 

40% reduction in mission success during jamming events. Fail-safe mode triggered or UAVs lost control 
entirely. 

Zheng and Sun [79] Mission Completion 
Rate 

Spoofing reduced mission success by 30%, with UAVs unable to 
reach targets. 

UAVs failed to complete missions. 

Ranyal and Jain [80] Control Loss 25% of cases resulted in loss of control during GPS spoofing. Critical loss of control, leading to deviation from 
mission plan. 

Ferreira et al. [71] Control and Safety 
Concerns 

Jamming led to complete control loss in critical zones. UAVs became highly vulnerable, especially in high-
altitude missions. 

Ala Altaweel et al. 
[73] 

Recovery Time Recovery from spoofing averaged 10-15 seconds after 
interference was mitigated. 

Delays in resuming normal operations after attacks. 

Di Pietro et al. [81] Failure Modes 35% of UAVs experienced system shutdown or emergency 
landings during jamming. 

High-risk failure modes observed; UAVs unable to 
recover autonomously. 

Panice et al. [75] Recovery Time from 
Spoofing 

Recovery took 5-10 seconds when backup navigation systems 
were available. 

Prompt recovery possible with multi-sensor 
systems. 

Khan et al. [82] Detection and 
Mitigation 

90% recovery success using multi-sensor fusion and machine 
learning-based detection systems. 

Effective mitigation strategies for recovery from 
GPS spoofing. 
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Fig. 3. Distribution of positioning error under normal, spoofed, and jammed conditions 
 

 
 
Fig. 4. Violin Plot displaying the distribution and density of positioning error for each condition 
 
Spoofing led to a slightly higher completion rate 
of 69.44%, confirming the moderate impact of 
spoofing compared to jamming. These                 
results highlight the significant safety risks posed 
by GPS interference, as noted in the literature. 
 
Recovery Time from Interference: The result of 
Recovery Time (Fig. 6) under spoofed and 
jammed conditions corroborates with qualitative 
insights. 
 
The data showed that spoofing recovery 
occurred within 10.07 seconds, which is similar 
to the recovery times reported by Ala Altaweel et 

al. [73]. In contrast, jamming had a more severe 
impact, with recovery times averaging 14.97 
seconds, mirroring the delayed recovery 
observed by Di Pietro et al. [81]. 
 
Development and Testing of Novel Detection 
Algorithms for Spoofed/Jammed GPS 
Signals: The goal of this study was to develop 
and test detection algorithms using machine 
learning and statistical analysis to distinguish 
between normal and spoofed/jammed GPS 
signals. The algorithms' performance was 
evaluated using accuracy, precision, recall, and 
F1-score. Signal integrity was assessed through 
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statistical anomaly detection, with cross-
validation applied to ensure robustness. 
 
The performance of the machine learning models 
is summarized in Table 3. The Random Forest 
model had an accuracy of 87% but failed to 
detect spoofed signals, with precision, recall, and 
F1-scores of 0%, though its AUC was 0.75. The 
SVM model had a lower accuracy of 40.7% but a 
higher recall of 56.4%, indicating better 
sensitivity to spoofed signals. The Neural 
Network also achieved 87% accuracy, but with a 
low recall of 2.6% and an F1-score of 4.9%. The 
AUC for the SVM and Neural Network were 0.66 
and 0.61, respectively. 
 
These performance metrics were further 
validated through 5-fold cross-validation, which 
ensured that the models were robust and not 
overfitting to the data. As seen in Table 4, the 

Random Forest model achieved a cross-
validation accuracy of 85.7%, and the Neural 
Network followed closely with 86.3%. The SVM 
model, while performing better in recall for 
detecting spoofed signals, had a cross-validation 
accuracy of only 43.9%, further indicating the 
trade-off between sensitivity to spoofed signals 
and overall model performance. 
 
In addition to the performance metrics, Fig. 7 
shows the ROC curves, illustrating the trade-off 
between sensitivity and false positive rate. The 
Random Forest achieved the highest AUC 
(0.75), followed by SVM (0.66) and Neural 
Network (0.61). While Random Forest had low 
precision and recall for the minority class, it 
showed the best overall ability to distinguish 
between normal and spoofed signals. SVM, 
though less accurate, demonstrated better 
sensitivity with a higher recall and AUC of 0.66. 

 

 
 

Fig. 5. Mission Completion Rate Across Conditions 
 

Table 3. Model Performance Metrics After Class Weight Adjustment 
 

Model Accuracy Precision Recall F1-Score AUC 

Random Forest (Weighted) 87.0% 0.0% 0.0% 0.0% 0.75 
SVM (Weighted) 40.7% 12.0% 56.4% 19.8% 0.66 
Neural Network (Weighted) 87.0% 50.0% 2.6% 4.9% 0.61 

 
Table 4. Cross-Validation Results 

 
Model Cross-Validation Accuracy 

Random Forest (Weighted) 85.7% 
SVM (Weighted) 43.9% 
Neural Network (Weighted) 86.3% 
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Fig. 6. Recovery time across conditions 
 

 
 

Fig. 7. ROC Curves for Random Forest, SVM, and Neural Network Models 
 
The anomaly detection analysis showed Z-score 
identified anomalies in 0.4% of the data, while 
PCA detected 4.55%. These methods provided 
additional insights into signal integrity, with PCA 
appearing more effective but potentially prone to 
more false positives 
 
Evaluate the Effectiveness of Various Mitigation 
Strategies: The effectiveness of four mitigation 
strategies—Signal Authentication, Jamming 
Mitigation, Inertial Navigation System (INS), and 
Visual Odometry—was evaluated using three key 

performance metrics: mission success rate, 
recovery time, and error reduction. The results 
are shown in the tables (Table 5 and Table 6) 
and the charts below (Fig. 8 to Fig. 10). 
 
Mission Success Rate: The mission success 
rate was highest for INS and Jamming Mitigation, 
both achieving around 54%. Signal 
Authentication had the lowest success rate at 
approximately 49%, while Visual Odometry 
performed slightly better, with a success rate of 
51.5%. These findings are illustrated in Fig. 8. 
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However, the ANOVA test revealed that the 
differences between these success rates were 
not statistically significant (F-value: 0.5546, p-
value: 0.6451), meaning all strategies performed 
similarly in this regard. 
 
Recovery Time: The recovery time results, 
depicted in Fig. 9, showed that INS had the 

fastest recovery, averaging 0.81 seconds, while 
Jamming Mitigation followed at 0.96 seconds. 
Signal Authentication and Visual Odometry took 
longer to recover, averaging 1.13 seconds and 
1.28 seconds, respectively. Again, the ANOVA 
test showed no significant differences in recovery 
times between strategies (F-value: 1.0374, p-
value: 0.3751) 

 

 
 

Fig. 8. Comparison of Mission Success Rate 
 

 
 

Fig. 9. Comparison of Mitigation Strategies 
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Fig. 10. Average Error Reduction by Mitigation Strategies 
 

Table 5. Performance of Mitigation Strategies Across Key Metrics 
 

Mitigation Strategy Mission Success Rate Average Recovery Time 
(s) 

Average Error Reduction 
(%) 

INS 54.07% 0.81 95.06% 
Jamming Mitigation 54.17% 0.96 77.25% 
Signal Authentication 49.21% 1.13 77.85% 
Visual Odometry 51.53% 1.28 89.79% 

 
Table 6. ANOVA results 

 
Metric dfB dfW SSB SSW MSB MSW F- 

value 
P-
value 

Eta-
Squared 

Mission 
Success Rate 

3 996 0.4161 249.0999 0.1387 0.2501 0.5546 0.6451 0.0017 

Average 
Recovery Time 
(s) 

3 996 31.6621 10132.967 10.5540 10.1737 1.0374 0.3751 0.0031 

Average Error 
Reduction (%) 

3 996 5.8176 1.2966 1.9392 0.0013 1489.5904 0.0000 0.8177 

 
Error Reduction: In terms of error reduction, 
INS was the most effective strategy, reducing 
errors by 95.1% on average, as shown in Fig. 10. 
Visual Odometry followed with an average error 
reduction of 89.8%. Both Signal Authentication 
and Jamming Mitigation showed similar 
performance, with error reductions of around 77-
78%. Unlike the previous metrics, the ANOVA 
analysis revealed a statistically significant 
difference in error reduction between the 

strategies (F-value: 1489.59, p-value: 0.000). 
The large Eta-Squared value (0.818) indicated 
that the choice of mitigation strategy had a 
substantial impact on error reduction. 
 
The findings indicate that INS is the most 
effective strategy, offering the highest error 
reduction and fastest recovery time. Visual 
Odometry is also strong for error reduction but 
has slower recovery, while Jamming Mitigation 
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provides balanced performance with lower error 
reduction. Signal Authentication performed the 
weakest across all metric 
 

5. DISCUSSION 
 
The findings of this study reinforce the significant 
challenges that GPS spoofing and jamming pose 
to the safe operation of UAVs across both 
military and civilian sectors, a concern echoed by 
multiple researchers (e.g., Mohsan et al. [10]; 
Van den Bergh et al. [72]). As UAV reliance on 
GPS for navigation grows, the potential for 
interference to compromise mission success 
becomes increasingly critical. Real-world 
incidents, such as the disruption of UAV 
surveillance during the 2018 Venezuelan 
presidential election (Beene and Levin [2]), 
highlight the operational risks that UAVs face in 
GPS-compromised environments, which is 
consistent with the results showing significant 
positioning errors and mission failures under both 
spoofing and jamming conditions. 
 
The qualitative analysis revealed that replay 
attacks and narrowband jamming are the most 
prevalent methods of GPS interference, with 
studies like those of Kassas et al. [70] and 
Ferreira et al. [71] highlighting how these 
methods severely degrade UAV performance. 
The positioning errors in this study, which 
increased to 15.11 meters under spoofing and 
20.45 meters under jamming, are consistent with 
the findings of Gaspar et al. [78], who reported 
similar navigation drift under interference 
conditions. This further emphasizes the real-
world applicability of the results, showing that 
UAVs are vulnerable to the exact types of 
interference described in the literature. 
 
In terms of detection and mitigation strategies, 
this analysis demonstrates that machine learning 
algorithms can effectively detect interference, but 
trade-offs exist between accuracy and sensitivity. 
As noted by Ferreira et al. [71], multi-sensor 
fusion is one of the most promising techniques 
for detecting GPS interference, and this study 
found that SVM, while less accurate overall, 
exhibited better recall in detecting spoofed 
signals. This reinforces the importance of 
prioritizing sensitivity when developing detection 
systems for high-risk environments, such as 
those discussed in military settings by Lyu and 
Zhan [17]. 
 
Regarding mitigation strategies, the results show 
that Inertial Navigation Systems (INS) offer the 

highest error reduction (95.06%) and fastest 
recovery times, consistent with the work of 
Mohsan et al. [10], who highlighted the 
effectiveness of multi-sensor systems in 
maintaining UAV navigation in GPS-                      
denied environments. However, the drift over 
time that occurs in INS was noted as a  
challenge in the literature, suggesting that while 
INS performs well in the short term, further 
research is needed to ensure its long-term 
accuracy. 

 
The commercial sector faces unique challenges 
in adopting advanced anti-jamming techniques 
due to resource constraints. Studies such as 
those by Mohsan et al. [6] and Sadaf et al. [37] 
argue that while cryptographic methods and 
machine learning-based detection are highly 
effective, they remain costly and difficult to 
implement in commercial UAVs. This aligns with 
the finding that Signal Authentication was the 
weakest performer, likely due to its higher 
complexity and lower cost-effectiveness 
compared to other mitigation strategies, which 
are more suitable for high-budget military 
applications. 

 
6. CONCLUSION AND RECOMMENDA-

TION 
 
This study analyzed GPS spoofing and jamming 
techniques and their impact on UAV 
performance, along with the effectiveness of 
various mitigation strategies. Replay attacks and 
narrowband jamming emerged as the most 
common interference methods. The analysis of 
GPS data showed that these attacks significantly 
increase positioning errors and reduce mission 
success rates, posing serious safety risks to UAV 
operations. Machine learning models, such as 
Random Forest, SVM, and Neural Networks, 
were assessed for detecting spoofed and 
jammed signals, with the SVM model 
demonstrating better sensitivity to spoofing 
despite lower overall accuracy. INS and Visual 
Odometry proved most effective in reducing 
navigation errors and maintaining mission 
success under interference, emphasizing the 
need for robust detection and mitigation 
strategies in GPS-reliant sectors. The study 
recommends the following: 

 
1. Adopt Multi-Sensor Fusion for 

Detection: Prioritize using systems like 
INS and Visual Odometry in both civilian 
and military UAVs. These systems reduce 
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errors by over 90% and should be 
integrated to enhance UAV resilience in 
GPS-denied environments. 

2. Implement Machine Learning Detection: 
Deploy machine learning algorithms, 
especially SVM models, in real-time UAV 
systems to improve detection sensitivity 
and quickly mitigate GPS spoofing and 
jamming. 

3. Develop Cost-Effective Anti-Jamming 
for Commercial UAVs: Focus on 
affordable anti-jamming technologies, such 
as jamming-resistant antennas and 
frequency hopping, to enhance commercial 
UAV protection at a manageable cost. 

4. Strengthen GPS Signal Authentication: 
Integrate cryptographic signal 
authentication into standard GPS 
protocols, particularly in critical civilian 
sectors like infrastructure monitoring, to 
prevent spoofing and ensure secure 
navigation. 
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