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Abstract: In UnderWater-Acoustic-Orthogonal-Frequency-Division-Multiplexing-(UWA-OFDM)
communication, the traditional interpolated channel estimation method produces error codes, due to
the small number of user pilots, uneven distribution, and complex channel characteristics. In this
paper, we propose a novel UWA-channel-estimation method based on Deep Learning (DL). First,
based on a small number of channel samples, we used the CWGAN-GP model to generate enhanced
classified underwater-acoustic channel samples to have semantic similarity to the real samples and
also to present the diversity of the samples. After obtaining the channel sample, the pilot estimation
matrix was processed in a similar image way. Here, we extracted the channel features by constructing
a convolutional network structure similar to U-Net, weakening the impact of feature information
loss. A Channel-Attention-Denoising-(CAD) module was also designed, to further optimize the
reconstructed channel information. The simulation results verified the superiority of the proposed
algorithm, in terms of Mean Square Error (MSE) and Bit-Error Rate (BER) compared to the existing
Least-Squares-(LS), Deep-Neural-Network-(DNN), and ChannelNet algorithms.

Keywords: underwater acoustic; OFDM; DL; channel estimation; channel attention

1. Introduction

Among the currently known forms of energy radiation, the sound wave is the best
carrier of underwater wireless communication [1,2]. The radio communication mode usu-
ally used on land is that of electromagnetic waves as the carrier. When the electromagnetic
waves propagate in the water, they are absorbed in large quantities and are rapidly at-
tenuated, and the action distance is very limited. Sound waves have good propagation
performance underwater, and the attenuation coefficient of sound waves ranging between
1 Hz and 50 kHz in water ranges from about 10−4 dB/m to 10−2 dB/m [3]. After years of
development, Underwater-Acoustic-(UWA) communication technology has undergone a
transition from non-coherent communication to coherent communication. Additionally,
multiple-access communication methods, such as Orthogonal Frequency-Division Multi-
plexing (OFDM), represent a shift from single-carrier communication. These advancements
reflect the continuous pursuit of higher communication rates and bandwidth requirements
in underwater communication [4–6]. The complex and changeable characteristics of UWA
transmission lead to a series of problems in the UWA channel—such as strong multiple
paths, fast decline, and complex noise interference—which present great difficulties and
challenges for underwater information transmission [7,8]. Estimation and equalization can
effectively obtain the channel information and restore the transmitted signal at the receiving
end. This is an important part of underwater comprehensive information perception and
information interaction, and has very important research significance.

In a traditional UWA communication system, it is usually necessary to transmit a
fixed pilot sequence at the transmitting end, and to accurately estimate the channel at the
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receiving end, so as to realize the recovery of the data signal. Common channel-estimation
and equalization methods include the Least-Squares-(LS) algorithm [9,10], the Minimum-
Mean-Square-Error-(MMSE) [11] algorithm, and the Compressed-Sensing-(CS) method [12].
Although the LS algorithm is simple to implement, its overall performance is poor. While
the MMSE algorithm can approximate the optimal solution in a statistical sense, it requires
a prior channel state as the premise, so its operability in a practical application is not strong.
In addition, this kind of algorithm does not have the characteristics of adaptation. The CS
algorithm can utilize the sparsity of the UWA channel to reconstruct the original signal at
a sampling rate lower than the Nyquist sampling rate. Keeping this in consideration, the
authors in [12] formulated an iterative-UWA-channel-estimation approach, assuming that
the UWA channel undergoes Rayleigh fading.

In recent years, the design of a UWA communication system based on machine
learning has been an emerging research topic, and machine-learning methods have great
potential to promote the further development of UWA communication technology. In [13],
the authors established a robust five-layer-neural-network model designed for water-
acoustic channel estimation and equilibrium. They applied this model to simulate the
channel, using BELLHOP for offline training and online testing. The outcomes revealed that
the Deep-Neural-Network-(DNN)-based network model exhibited significant advantages
over traditional algorithms, particularly in scenarios with limited OFDM-communication
pilot numbers. In [14], the authors also proposed a joint UWA-OFDM demodulation,
channel-estimation, and balanced-neural-network structure, to realize the integration
of the receiving device. The authors in [15] proposed a UWA receiving system based
on a Deep Belief Network (DBN), which effectively alleviated the performance decline
caused by the Doppler effect and multiple-path transmission in communication. The
simulation and offshore test results verified the effectiveness of this method. Unlike
traditional methods, two different framework models based on DNN were proposed in [16],
to address the UWA-OFDM-channel-estimation problem. Extensive experiments were
conducted on the proposed methods, to compare them to traditional methods, such as LS,
MMSE, and the back propagation algorithm. Although previous research has demonstrated
the effectiveness of machine-learning methods in improving the overall performance of
UWA channel estimation, there are still many key problems to be solved, regarding the
specific application scenarios of UWA. One major challenge is the scarcity of samples.
UWA communication faces limitations imposed by sea test conditions and other factors,
resulting in low collection efficiency in the UWA environment and high acquisition costs
for communication data. Therefore, with the sample size collected by UWA communication
in a limited time, it is usually difficult to support the effective training of the model, thus
causing overfitting of the model. Another hurdle is data-calibration difficulties. Existing
models usually use the real channel impulse response as the training label. However, it
is difficult to obtain the true value of the channel in real UWA communication in real
time—that is, the calibration of the training labels cannot be realized, so the learning of the
model usually needs to be conducted offline. Hence, there is a pressing need for research
focused on enhancing UWA channel data.

Traditional data-enhancement algorithms include replay technology based on the
statistical characteristics of raw water-acoustic-channel-distribution and data-enhancement
methods based on communication-signal-processing technology. Channel replay is able to
generate data with the same statistical properties, based on a small number of measured
UWA channels. Relevant studies have proposed a UWA channel simulator driven by mea-
surement data, which assumes that in a specific time window the communication channel is
a stochastic process [17]. In [18], the authors used Empirical-Mode-Decomposition-(EMD)
technology to first dismantle the channel into the true part and the random part [19]. On the
basis of ensuring the inherent characteristics of the UWA channel, the method extends the
latter and recombines with the confirmed part, to generate new UWA channel data. With
the help of disturbances and interference often occurring in UWA communication scenarios,
such as synchronization error, Doppler offset, noise interference, etc., data enhancement
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based on communication-signal-processing technology can realize data expansion. Typical
work includes applying a symbolic time shift to the raw data in the literature and a Doppler
shift to achieve data enhancement [20].

Data-enhancement algorithms are needed in many application fields of deep learning,
and the research from the perspective of deep learning provides a way for the reference of
UWA channel estimation. Typical of these is Generative-Adversarial-Networks-(GANs)
data enhancement. GANs have the powerful ability to produce simulated samples that
capture the actual data distribution [21]. The training algorithm of GANs for generating
simulated samples highly similar to the actual data distribution essentially involves a
two-player minimax game with two adversarial networks and one discriminative network.
The generator network G uses random latent variables, following a standard Gaussian
distribution or a uniform distribution, to generate simulated samples with the goal of
deceiving the discriminator network. Conversely, the discriminator network D aims to
differentiate between the simulated samples generated by the network G and real samples
that adhere to the actual data distribution. This implies that a trained GAN can effectively
capture the complex distribution of a UWA channel. By using a GAN’s generator network,
we can obtain a large number of generated samples of simulated UWA channels. However,
the training of GANs is usually unstable, with the problems of network convergence, mode
collapse, and gradient vanishing [22], etc. Therefore, in this paper we propose a novel GAN
variant to improve the training stability. After obtaining a rich sample of UWA channels,
channel estimation is performed on the received signals passing through the UWA channels,
using our proposed DL framework.

In this paper, we propose a DL architecture to implement channel-sample generation
and channel estimation for UWA-OFDM communication. The main contributions of this
study are summarized as follows:

(1) we propose a DL-based UWA-OFDM-channel-estimation scheme for the defects in
the traditional UWA-OFDM communication system. We consider the shortage of
underwater-acoustic channel samples and we introduce the CWGAN-GP model to
generate enhanced channel samples, whose generator contains some channel feature
parameters to realize different types of channel model generation.

(2) We propose a novel deep-learning channel-estimation architecture. First, in order
to attenuate the effect of feature information loss, we extracted channel features by
constructing a convolutional network structure in the way of U-Net, and we then
designed a Channel-Attention-Denoising-(CAD) module, to further optimize the
reconstructed channel information.

(3) We provide a validation of the channel quality in different UWA environments. The
numerical results show that the proposed model is better than the traditional OFDM
communication system, DNN-based, and ChannelNet-based models, in terms of Mean
Square Error (MSE) and Bit-Error Rate (BER). Significant performance improvements
are particularly evident in harsh UWA environments.

The rest of this paper is organized as follows: In Section 2, we briefly introduce the
UWA-OFDM communication system. In Section 3, we present the proposed deep-learning-
based-channel-estimation scheme. In Section 4, we experiment and evaluate the estimated
performance. The paper concludes with Section 5.

2. The UWA-OFDM Communication System

We consider a downlink UWA-OFDM communication system, and a schematic repre-
sentation of the traditional system model is shown in Figure 1. The information X(k) to be
transmitted passes through the baseband signal processing to obtain the transmitted signal
x(t). Then, x(t) passses through the UWA channel to the receiving device, to obtain y(t).
After a series of reverse transformations, the frequency-domain information Y(k) can be
obtained. For UWA channels, the general expression is as follows:
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h(t, τ) =
L

∑
l=1

Al(t)δ(τ − τl(t)). (1)

Here, we make the assumption that the UWA channel exhibits linear invariance within
an OFDM transmission signal. This allows for a satisfactory approximation of the UWA
channel as the channel impulse response of the L principal discrete paths. Al(t) is the decay
coefficient of the constant path l, and τl(t) is the time delay corresponding to the path l.

Figure 1. Traditional UWA-OFDM communication system.

The propagation of sound waves in the ocean is affected by the wave fluctuations of the
sea surface, the uneven stratification of the seabed, and the scattering and refraction effects
caused by the heterogeneity of the seawater medium. In addition, the complexity of a UWA
channel is reflected because it changes over time and through space, and these changes
occur randomly, so an additional statistical-modeling stage is required. However, some
efforts are still being made to build standard models to succinctly describe the statistics of
UWA channels [23]. Therefore, in this paper, we used the powerful fitting ability of the DL
method to reconstruct the UWA channel of the data block, based on the channel estimated
by the pilot block.

At the transmitter, the transmission symbol of the inserted pilot undergoes initial con-
version into parallel data streams. Subsequently, it is modulated onto various subcarriers
through a Discrete-Fourier-Reverse-Transform-(IDFT) unit. Thereafter, a Cyclic Prefix (CP)
is inserted, to mitigate inter-symbol interference. The transmission signal passes through
parallel-to-serial conversion and then is sent to the water-acoustic channel. The signal
received at the receiver is

y(t) =
L

∑
l=1

Al(t)x(t − τl(t)) + w(t), (2)

where w(t) represents the Additive-White-Gaussian Noise (AWGN). After removing the
CP and performing the DFT, the received frequency-domain signal becomes

Y(k) = X(k)H(k) + W(k). (3)

In the conventional UWA-OFDM system, the pilot signal is extracted and utilized for
channel estimation. The LS estimate of H(k) can be represented as [9]

Ĥ(k) =
Ypilot(k)
Xpilot(k)

= H(k) +
W(k)

Xpilot(k)
. (4)

Here, we assume that the pilot is distributed in a comb-like structure, to better estimate the
effect of the Doppler.
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3. The UWA-OFDM-Channel-Estimation Framework Based on Deep Learning

This section outlines the UWA-OFDM-channel-estimation framework based on deep
learning. According to the shortcomings of insufficient channel samples, we first used the
data-enhancement method to increase the number of channel samples, and we then used
deep learning for channel estimation. The overall framework is shown in in Figure 2.
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Figure 2. The UWA-OFDM-channel-estimation framework based on deep learning.

3.1. GAN-Based UWA-OFDM Channel Sample Enhancement

The GAN structure is shown in Figure 3, including the generator and the discriminator.
In the generator, to learn the distribution pg on the UWA channel data h, we randomly
define a prior noise variable z as input that satisfies a normal distribution or other arbitrary
distribution. The generator network G(z; θg) maps the latent distribution pz of the latent
variables z into the data distribution pg, thus obtaining a simulated sample that fits the
distribution pg, which is a differentiable function characterized by the multilayer perceptron
G. In the discriminator, we need to define a multilayer perceptron D(z; θd). D(z; θd) denotes
the probability of converting h into a sample of actual data that fits the distribution pdata
while different from pg. The role of the generator is to generate false data similar to the real
data, while the discriminator is responsible for classifying the real data and the false data.
We train D to maximize the probability of correctly assigning true samples and generating
samples, so we can train G simultaneously by minimizing the log(1 − D(G(z))). That is to
say, the discriminator D and the generator G play a minimax game on the value function
V(G, D):

min
θg

max
θd

V(D, G) =Eh∼pdata(h)[log D(h; θd)]+

Ez∼pz(z)[log(1 − D(G(z; θg); θd))],
(5)

where θg and θd are the training parameters of the network. Furthermore, the generative
and discriminant networks alternatively optimize the parameters θg and θd, based on their
respective loss functions. That is, the parameters of one network (i.e., G or D) are calculated
by using the error-Back-Propagation-(BP) algorithm and the optimization method (e.g.,
the gradient-descent method), while the parameters of the other network are fixed. By
iteratively optimizing the parameters of the GAN network, the generative and discriminant
networks learn reasonable mapping functions. This means that the distribution pg of
the simulated samples generated by the generator network converges to the actual data
distribution pdata, and the discriminator network cannot distinguish the simulated samples
that match the distribution pg from the actual sample (matching the distribution pdata).
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Figure 3. The GAN structure.

GANs are very clever in theory. We should first train the discriminator as well as
possible during the training process. But, in practice, the better the discriminator is trained,
the more difficult is the generator to optimize, which eventually leads to a GAN training
crash. Therefore, we adopted the Wasserstein-GAN-with-Gradient-Penalty-(WGAN-GP)
architecture, to alleviate the instability during GAN training [24], as shown in Figure 4.
By introducing the Wasserstein distance, which has smoothing properties superior to
the Jensen–Shannon (JS) divergence, the gradient-vanishing problem can be theoretically
solved. Then, we used a discriminator neural network with a limited numerical range to
maximize the mathematical transformation of the Wasserstein distance in a solvable form,
and the Wasserstein distance could be approximated. In the regime of this approximate
optimal discriminator, optimizing the generator serves to decrease the Wasserstein dis-
tance, effectively bringing the generated distribution closer to the real distribution. The
WGAN not only addresses the issue of unstable training but also provides a reliable metric
for tracking training progress, with this metric being highly correlated to the quality of
the generated samples. The WGAN-GP incorporates a gradient penalty [25], replacing
the weight-clipping method used in the WGAN. The gradients of the discriminator are
restricted by directly imposing an additional penalty term. Therefore, the loss function can
be expressed as

min
θg

max
θd

V(D, G) =Eh∼pdata(h)[D(h; θd)]+

Ez∼pz(z)[−D(G(z; θg); θd)]− λGP(D),
(6)

where λ is the penalty coefficient, and the last term GP(D) can be written as

GP(D) = Eĥ∼psample(ĥ)
[(||∇ĥD(ĥ|; θd)||2 − 1)2], (7)

where the distribution psample(x̂) fits the true data distribution pdata and the generated
data distribution pg point pairs are evenly sampled along the line. However, for the
unconditional generation model, the generation of the data is uncontrollable. We hoped to
use the posterior information in the training data, by attaching some channel information
of the real data to the model, which could guide the model to generate our desired channel
data. The specific generator and discriminator network structures are shown in Figure 5.
Eventually, the loss function was rewritten as

min
θg

max
θd

V(D, G) =Eh∼pdata(h)[D(h|c; θd)]+

Ez∼pz(z)[−D(G(z|c; θg); θd)]− λGP(D).
(8)
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Figure 5. The generator and discriminator network structures.

3.2. DL-Based-Estimated-UWA-OFDM Channel

We used the CNN-based-network framework to estimate the channel state, before
which we needed to solve some necessary problems. First, as an input to the network,
the image data are usually represented by the RGB three-channel matrix, but the channel-
state information is all complex. Therefore, we wanted to modify the input layer of the
network for this case. We first divided each complex matrix into two part-matrices: real
and imaginary. To preserve the potential correlation between the real and imaginary parts,
we reconstructed the two matrices overlapping as a new two-channel matrix. Moreover,
some elements in the channel-state-information matrix usually have negative values, which
affects the back propagation in the convolutional network and the correct convergence of



Electronics 2024, 13, 689 8 of 18

the network. To do this, we used a Leak-Rectified Linear unit (LReLu) as our activation
function after each convolution layer [26]:

LReLu(x) =
{

x, x > 0
bix, x ⩽ 0

, (9)

where bi was the constant parameter between 0 and 1. As the value in the matrix was very
close to 0, it was likely to cause gradient vanishing throughout the convolution calculation.
In order to solve this problem, we initialized the data before sending them to the network,
and we eliminated the influence on the estimated-channel-state-information matrix in the
output layer.

The proposed channel-estimation-network framework based on the CNN is shown
in Figure 6. First, the network input the data Ĥpilot(k) for the preprocessing operation.
The input Ĥpilot(k) had to be divided into a real part and a virtual part. Then, we used
several convolutional layers acting on the process of upsampling and downsampling,
respectively, which were used as features to extract the signal and the transmission of
internal information. We used the residual structure between the layers [27], and the
output of all the previous layers was the input of the next layer. The output H̃(k) can be
expressed as

H̃(k) = Fn(Fn−1(· · · F1(Ĥpilot(k)))), (10)

where Fn(·) represents convolution operation. Due to constant underground sampling, the
feature information eventually passes through the bottleneck layer, where a lot of detail
features may be lost. To alleviate this problem, we adopted a U-Net-like structure, and
between upper and downsampling, we used the operation of jump connections, which
integrated richer higher convolutional feature layers and lower convolutional features,
to further compensate for the lost information of downsampling during the encoding
stage. Each of the networks contained three upsampling and downsampling operations.
In the first downsampling, 32 filters were used, and for each time of the subsequent
downsampling, the number of filters was twice as many as before. The output from each
layer in the upsampling remained consistent with the downsampling.

CAD

Skip Connection

Loss Fuction

Convolution Layer

( )H k ( )H k( )H ((

ˆ ( )pilotH k

Figure 6. A CNN-based-channel-estimation-network framework.

After obtaining the features oversampled in the last layer, we did not directly regress
the channel information, but we designed a Channel-Attention-Denoising-(CAD) module
to further optimize the channel information [28], as shown in Figure 7. Here, our module
used the channel-attention mechanism, and we wanted the model to selectively focus on
or reinforce the information of a specific underwater-acoustic channel when processing
features, reducing the attention to unnecessary information. While reducing the model
computational burden, the model was allowed to adaptively learn the weights of frequency
features during training, as different environments and underwater-acoustic channels may
lead to differences in the signal-frequency spectrum. Specifically, we input the features as
follows: f ∈ RC×H×W . Then, for each channel i, we calculated the average value:

zi =
1

H × W

H

∑
j=1

W

∑
k=1

fi,j,k, (11)
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Next, we introduced two learnable weight parameters, W1 and W2, mapped into the
two representations ui = σ(W1 · zi) and vi = σ(W2 · zi), where σ was the ReLU activation
function. The weighted channel representation f̃i = ui · Xi was obtained by using u and
v weighted for each channel, where f̃i was a weighted representation of the channel. To
ensure that the weighted channel representation and the original input had the same scale,
the f̃i were normalized as

f̃i =
ui · fi

C
∑

j=1
uj · f j

.
(12)

This ensured that the weighted channel representation summed to 1 after normalization.
Finally, we multiplied the normalized weighted channel representation with the original
input feature map, to obtain the final output:

H̃ = f̃ ⊙ f , (13)

where ⊙ represented the multiplication by element.
The last layer of CNN output comprised data close to the expected value and evaluated

by the loss function. Finally, we used MSE and BER as the total loss function of the model,
where BER prevented gradient decline when the MSE was small. They were, respectively,
denoted as follows:

LMSE =
1
N ∑

n
(H̃n − Hn)

2, (14)

and
LBER =

1
N ∑

n
(κ(Ŷn)− Xn)

2, (15)

where H̃n and Hn represented the predictive channel information of the model and the
corresponding ground-truth values, respectively, Ŷn and Yn represented the estimated
received information of the model and the corresponding ground-truth values, respectively,
and κ(·) represented the operation of hard decision making. Therefore, the total loss
function was

Ltotal = LMSE + LBER. (16)

4. Experiments and Evaluations

In this section, we commence by presenting the parameter configurations for the UWA
channel and the UWA-OFDM system. We conducted simulation experiments, to assess the
authenticity of the channel estimates, the MSE, and the BER performance of our proposed
algorithm within the OFDM system.
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4.1. Experiments Parameters

In our study, we employed a widely utilized UWA channel simulator developed
by [29]. This simulator had undergone validation using real data collected from four
experiments, ensuring its ability to generate accurate UWA channels:

H( f , t) = H̄0 ∑
l

hl γ̄l( f , t)e−j2π f τl , (17)

where H̄0 was the nominal frequency response, and where hl and γ̄l( f , t) were the large-
scale path gain and the small-scale fading of the l-th UWA path, respectively. Here, we
adopted the channels of KAU1 and NOF1 as the simulation environment, and some
parameters, summarized in Table 1, to configure the UWA physical environment. Table 2
presents the main simulation parameters of the UWA-OFDM system. For channel samples,
the CWGAN-GP generator was used to generate the KAU1 and NOF1 channels, and a CSI
matrix of 10,000 pilot positions was obtained after frequency-domain conversion and pilot
channel estimation at the receiver. Here, we generated CSI matrices unified at a Signal-to-
Noise Ratio (SNR) of 15 dB. Of these, 80% were randomly divided into the training set,
with 10% the validation set and the last 10% the test set. Furthermore, we set the scale factor
to 10, set the initial learning rate to 0.001, and then decay by 0.1 times every 40 epochs. The
maximum epoch was set to 100, but if the value of the loss function did not drop within
5 consecutive epochs, the training was stopped prematurely.

As depicted in Table 2, there were 512 subcarriers, and each frame was composed of
14 symbols, resulting in a CSI matrix size of 512 × 14. In our simulation, we evaluated
the effectiveness of our proposed algorithm, using four different algorithms: the LS algo-
rithm [10], a DNN-based algorithm [16], the ChannelNet algorithm [30], and FullCSI. The
specifics are outlined below:

• LS: Select two or four symbols as pilot symbols, and then estimate the CSI of the pilot
location and data position by using the LS algorithm and the spline interpolation
method, respectively.

• DNN: Select two or four symbols as the pilot symbols, and then obtain the CSI matrix
by using the DNN-based algorithm.

• ChannelNet: Select two or four symbols as the pilot symbols, and then obtain the CSI
matrix based on ChannelNet. The algorithm is mainly divided into the process of
expansion and denoising reduction.

• FullCSI: Suppose that the channel is determined to be known.

Table 1. UWA Channel Parameters.

Parameter KAU1 NOF1

Water depth 100 m 10 m

Transmitter depth 20 m 10 m

Receiver depth 50 m 10 m

Transmission distance 1080 m 750 m

Spreading factor 1.7 1.7

Sound speed in water 1500 m/s 1500 m/s

Sound speed in bottom 1200 m/s 1200 m/s

Tx vehicle speed N(0, 1) m/s N(0, 1) m/s

Rx vehicle speed 0 m/s 0 m/s
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Table 2. UWA-OFDM System Parameters.

Parameter Value

Carrier frequency 8 kHz

Channel bandwidth 6–10 kHz

Number of subcarriers 512

Number of symbols/frame 14

Subcarrier spacing 7.8125 Hz

Symbol duration 128 ms

Cycle prefix length 30 ms

Modulation QPSK

4.2. Compare the Authenticity of the Channel-Response Estimates

We first verified the fitting ability of the proposed algorithm to the real channel sample
after channel estimation. We compared the amplitude of their channel responses under
the KAU1 and NOF1 channels separately, as shown in Figure 8. We can see that compared
to the NOF1 channel, the KAU1 channel was more complex and the multipath structure
was more complex. It was observed that the channel responses estimated by our proposed
algorithm could fit well to the real channel samples.
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Figure 8. Comparison of the estimated and true channel samples’ normalized amplitude in KAU 1
and NOF 1.

4.3. MSE Performance in an Extended Range of SNR

We evaluated the MSE performance over an extended SNR range compared to the
training dataset, to investigate the ability to generalize to uncertain SNR values. As shown
in Figures 9 and 10, we compared the MSE of several algorithms to different SNR ratios in
the KAU1- and NOF1-channel environments. The analysis and simulation results verified
that the LS method performs poorly in the case of UWA, because it is inversely proportional
to the SNR. While it is easy to implement, this simplicity comes at the cost of relatively
low precision. The DNN model was more accurate than the traditional LS algorithm,
and its MSE performance at SNR = 30 dB in KAU1 and NOF1 improved by about 184.9%
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and 246% compared to LS, because of its strong fitting ability; however, there are also
non-convex-optimization and gradient-vanishing problems in fully connected structures,
which makes it less stable when handling complex and variable scenarios, such as the
simulation-environment NCS1 channel and KAU1 channel. By contrast, the CNN model in
the ChannelNet model has strong feature-extraction ability and denoising network, which
ensures more accurate channel estimation at lower SNR = −10 dB, such as KAU1 and
NOF1, which improved MSE performance by about 175% and 171.4% compared to DNN.
Compared to the Channelnet-dimension-expansion network, our proposed algorithm has a
stronger feature-extraction ability, and its MSE performance has also been further improved.
For real-world applications, it is important that DL-based models have good generalization
capabilities, so that they can work efficiently when the online UWA environment does not
exactly match the UWA channel used in the training phase. The experimental results show
that the NOF1 channel has a simple multipath structure, slow time-varying dynamics, and
little improvement. However, in the experiments with KAU1, the model could provide
significant performance benefits, due to its excellent channel-reconstruction ability, due to
the more challenging channel structure and fast time-varying properties.

SNR(dB)

M
S

E

LS-2 symbols

DNN-2 symbols

ChannelNet-2 symbols

proposed-2 symbols

Figure 9. MSE vs. SNR for KAU1 channel.
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M
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E
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Figure 10. MSE vs. SNR for NOF1 channel.
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4.4. BER Performance in an Extended Range of SNR

We also evaluated the BER performance of each method over an extended range of
SNR, which corresponded to the data-recovery capabilities. Figures 11 and 12 compare
the BER performance for each method, where our proposed method achieved the best
performance. The performance of BER depends on the accuracy of the channel-matrix
prediction on all data symbols. We can see from the figure that the BER of the proposed al-
gorithm was always lower than that of LS, DNN, and ChannelNet. For example, compared
to LS, it improved by about 555.9% at SNR = 30 dB and by about 498.8% at SNR = 20 dB.
Similarly, compared to the KAU1 environment, the gap of several deep-learning methods
for the NOF1 environment was smaller, and the KAU1 gap for more complex features
more obvious.

SNR(dB)

B
E

R

LS-2 symbols

LS-4 symbols

DNN-2 symbols

DNN-4 symbols

ChannelNet-2 symbols

Figure 11. BER vs. SNR for KAU1 channel.
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LS-4 symbols

DNN-2 symbols
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Figure 12. BER vs. SNR for NOF1 channel.
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4.5. MSE and BER Performance for the Different Number of Pilot Symbols

Below, we analyzed the performance of MSE and BER under different pilot symbols.
The above simulation used two symbols, occupying the 2nd and 14th OFDM symbols,
respectively. The following situation combined the four pilot symbols, to occupy the 2nd,
6th, 10th, and 14th OFDM symbols, respectively. We first analyzed the case of MSE, as
shown in Figures 13 and 14. It can be seen that because the input-channel pattern features
corresponding to the added pilot symbols were richer, the performance of using four
pilot symbols rather than two pilot symbols was significantly better in the high SNR. In
the low-SNR case, the results of the LS-4 symbols were inferior to the LS-2-symbols case.
The reason for this result is mainly attributable to the elements in the UWA-CSI matrix
averaging in the order of 10−4 after the square, while the MSE in these cases was also of the
same order. When the error is compared to itself, it is not surprising that anyone’s MSE is
better than the others, as their performance was disappointing.

SNR(dB)

M
S

E

LS-2 symbols

LS-4 symbols

DNN-2 symbols

DNN-4 symbols

ChannelNet-2 symbols

ChannelNet-4 symbols

proposed-2 symbols

proposed-4 symbols

Figure 13. MSE vs. SNR for different number of pilot symbols in KAU1 channel.
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LS-4 symbols

DNN-2 symbols

DNN-4 symbols

ChannelNet-2 symbols

ChannelNet-4 symbols

proposed-2 symbols

proposed-4 symbols

Figure 14. MSE vs. SNR for different number of pilot symbols in NOF1 channel.
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The analysis of BER under different pilot symbols is shown in Figures 15 and 16. We
can see that compared to the case of two symbols, four symbols can bring very excellent
BER performance. It can also be seen from the figure that, whether in the KAU1 or NOF1
scenarios, our proposed algorithm can still maintain excellent performance, even with
fewer pilot symbols. This result holds significant implications for the UWA-OFDM system
within the repository. By conserving time-frequency resources for data transmission, we
can notably enhance data rates.

We performed ablation experiments for the proposed CAD module, to demonstrate
the effectiveness of the module. Our method took into account the uncertainty of the
underwater environment for the channel estimation and did not directly estimate the
channel information, but instead used the attention mechanism to denoise the channel.
The experimental results are shown in Figure 17. We considered the effect of w/- or w/o-
CAD modules on the model under two different pilot signals. With the pilot signal of
two and the low SNR = 5 dB, w/CAD improved the model performance by about 130%
compared to w/o CAD. With the pilot signal of four and a high SNR = 25 dB, w/CAD was
about 109% better than w/o CAD. This proves that CAD modules can further optimize
channel information, and can selectively focus on or reinforce the information of the specific
water-acoustic channel, especially in a low-SNR environment.

From the above simulation results, we know that the normalization amplitude of
the channel estimated by our proposed algorithm was close to the actual channel. The
performance of MSE and BER was better than the comparison algorithm, and it had
better performance for underwater-acoustic channels of different complexity, especially
for complex multi-path-structure scenarios in the performance comparison. For the small
number of pilots, the proposed channel-estimation algorithm could also maintain better
performance and help to enhance the data rate. However, because the samples of the
experiment came from the enhanced samples generated by the CWGAN-CP model, which
was close to the characteristics of the real samples, but had fine ambiguity compared to
the real samples, the models trained in this paper may still have had a weak gap for the
models trained with real data.
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LS-2 symbols

LS-4 symbols

DNN-2 symbols

DNN-4 symbols

ChannelNet-2 symbols

ChannelNet-4 symbols

proposed-2 symbols

proposed-4 symbols

FullCSI

Figure 15. BER vs. SNR for different number of pilot symbols in KAU1 channel.



Electronics 2024, 13, 689 16 of 18

SNR(dB)

B
E

R

LS-2 symbols

LS-4 symbols

DNN-2 symbols
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Figure 16. BER vs. SNR for different number of pilot symbols in NOF1 channel.
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FullCSI

Figure 17. BER vs. SNR for different number of pilot symbols in CAD ablation experiments.

5. Conclusions

In this paper, we proposed a novel DL-based method for UWA-OFDM channel es-
timation. First, the CWGAN-GP model was introduced, to generate enhanced channel
samples. Then, to reduce the influence of feature-information loss, we built a similar U-Net
convolution-network structure to extract channel features in a skip-connected manner,
then designed a channel-attention-denoising module, to further optimize the channel in-
formation reconstruction. Finally, the channel quality estimated by the proposed method
was verified in KAU1 and NOF1 environments for different pilot symbols. The experi-
mental results show that the channel response estimated by the proposed algorithm could
fit the real channel samples well, and that the proposed algorithm was superior to the
comparison algorithm in MSE and BER. For the low SNR, the proposed algorithm also
achieved better performance with less pilot symbols, which could better improve the
system-transmission performance. However, mathematical validation of the proposed
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algorithm was difficult, due to the difficulty of deep-learning models. In the future, we will
introduce more environmental data, such as number of users and number of channels, into
the simulation validation.
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